Proceedings of the National Technical Meeting

"Using Synergism to Strengthen Navigation Systems"

Phoenix, Arizona
January 22-24, 1991

PRICE: Members $50.00
Others $60.00

The Institute of Navigation
1026 16th Street, NW, Suite 104
Washington, DC 20036
TABLE OF CONTENTS

A Message from the General Chairman .. 1

A Message from the Program Chairman .. 2

SESSION 1A: GPS: Land and Marine

GPS Program Status,
Alan Burgess, *Navstar Global Positioning System,*
Los Angeles Air Force Base, Los Angeles, CA .. 5-14

Integrating Ranging Transponders with GPS
Jonathan S. Abel, *Tetra Systems Incorporated, Palo Alto, CA* &
James W. Chaffee, *SAIC, San Diego, CA* .. 15-24

Combined GPS/GLONASS Data Processing
Steven M. Chamberlain & John Chuang,
Magnavox Government and Industrial Electronic Co.,
Marine and Survey Systems Division, Torrance, CA .. 25-33

Three-Dimensional Attitude Determination with the Ashtech 3DF
24-Channel GPS Measurement System
Kendall Ferguson, Joanna Kosmalska, Mark Kuhl,

Dynamic GPS for Railroad Surveys: A Case History
L. Harold Spradley, David H. Spradley, *Satellite Positioning Corp., Houston, TX* &
Wayne A. Heitshuven, *Railbase Corp., Houston, TX* .. 43-44

GPS Azimuth Determining System (ADS) Cycle Resolution,
System Design, and Army Test Results
Richard D. Jurgens, Charles E. Rodgers, & Leopold C. Fan,
Adroit Systems Inc., Alexandria, VA ... 45-51

SESSION 1B: Loran: Aviation

The FAA Loran Program Status and Expectations
Richard P. Arnold, *MLS/Loran/GPS Program Manager, FAA, Washington, DC* 55-57

The Need for an Area Navigation Capability State of Oregon Experience with Loran-C
Paul E. Burket, & Roger G. Richey, *Aeronautics Division*,
Oregon Department of Transportation ... 59-63

Thomas P. Workman, *Chevron USA Inc., Houston, TX* ... 65-67

Strategic vs Tactical Air Traffic Control Utilizing ADS and Earth Reference Area NAV

Operational and Economic Benefits of Area Navigation from the Perspective of a Major Air Carrier
J. Michael Frank, *United Air Lines, Chicago, IL* .. 73-77

Loran Time Difference Correction Factors: Valid Information or Blue Smoke and Mirrors?
Michael J. Moressi, *DOT/FAA, Oklahoma City, OK* &
Franklin D. MacKenzie, *DOT/Transportation Systems Center, Cambridge, MA* 79-81

SESSION 2A: GPS: Aviation and Space

Attitude Determination for Space Transfer Vehicles Using GPS
Kevin D. Keierleber & Stanley C. Maki,
General Dynamics Space Systems Divisions, San Diego, CA 85-101

RAIM: Will It Meet the RTCA GPS Minimum Operational Performance Standards?
R. Grover Brown, *Iowa State University and Consultant,*
U.S. DOT/IVNTSC, Cambridge, MA ... 103-111
A New Highly Integrated P-Code High Dynamics GPS Receiver for Test and Training Range TSPI Applications
Robert E. DeCaro, Interstate Electronics Corp., Anaheim, CA ...113-118

P-Code Versus C/A-Code GPS for Range Tracking Applications
Carl Hoefener & Bob Van Wechel, Interstate Electronics Corp., Anaheim, CA ...119-121

SESSION 2B: Loran: Land and Marine
The DOT/DOD Federal Radionavigation Plan

Vessel Traffic Systems and the Application of Loran-C Automatic Dependent Surveillance
James F. Culbertson, Sr., Coastwatch, Inc., Dockton, WA & Walter N. Dean, Waldean Engineering, Wilsonville, OR ..135-140

From Russia and Beyond
Stephen F. Nuzzi, DOT/Transportation Systems Ctr., Cambridge, MA ...141-146

Dual-Rate, Auto-Notch Coupler-Loran with $50 of Parts
Jesse Pipkin, Consultant, Chico, CA ..147-153

Electronic Equipment Replacement Project (EERP) for the USCG Loran-C System
LCDR Doug Taggart & LT Ben Stewart, USCG Electronics Engineering Ctr., Wildwood, NJ155-163

Forecasting Into the Nineties: The Fast Fourier Method in Loran TD Corrections
A. Chris Daskalakis, DOT/Transportation System Ctr., Cambridge, MA ..165-167

SESSION 3A: Surveillance Systems: Space Based
Oceanic Applications of Automatic Dependent Surveillance (ADS)
Peter L. Massoglia, FAA, Washington, DC ..171-181

Civil GPS Service Interface Committee (CGSIC)
Heywood Shirer, U.S. Dept. of Transportation, Washington, DC ...183-185

A Note on the Development and Evolution of Ground and Space-Based Aeronautical Surveillance Systems
Keith D. McDonald, Sat Tech Systems, Arlington, VA ..207-213

A Simulator and Performance Criteria for Evaluation of Ground and Space-Based ATC Surveillance
J.W. Sennott, I.S. Ahn, Y.W. Lou, & Z. Ting, Dept. of Electrical and Computer Engineering and Technology, Peoria, IL ..193-201

The FAA Satellite Program: GPS, GLONASS and Related Areas
Robert Loh, The MITRE Corp., & Joseph Dorfler and Joseph Fee, FAA, Washington, DC203-211

Satellite Surveillance, Operational Requirements and Some Practical Realities
George Lyddane, FAA, Washington, DC ..213

SESSION 3B: Inertial: Part 1
Calibration and Test of the World’s Most Accurate Gyroscope
Gaylord Green, Jeremy Kasdin, and Mac Keiser, & Stanford University Gyroscope Team, Stanford University, Stanford, CA ...217-227

A Synergistic Solution to the GPS Integrity Problem
John W. Diesel, Litton Aero Products, Moorpark, CA ..229-236

A Ring Laser Gyro Inertial Measurement Unit Designed for System Integration Flexibility
Richard Eichner, Robert Hansen, and Richard Ouellette, Northrop Electronics Systems Division-Norwood, Norwood, MA ..237-246

SESSION 4A: Interoperable Systems: Part 1
In-Flight Demonstration of Hybrid GPS/Loran RAIM
Frank van Graas, Avionics Engineering, Ohio University, Athens, OH ..249-257

GPS/Loran-C Interoperability or Time and Frequency Applications-A Survey of the Times of Arrival of Loran-C Transmissions via GPS Common Mode/Common View Satellite Observations
Bruce Penrod, Richard Funderburk, and Peter Dana, Austron, Inc., Austin, TX259-268

Graceful Degradation of GPS/INS Performance with Fewer than Four Satellites
Zdzislaw H. Lewantowicz, USAF Wright Laboratory, Wright Patterson AFB, OH & Danny W. Keen, Aeronautical Systems Division, Wright Patterson AFB, OH269-276

Integrated INS/GPS/GLONASS Navigation Aid for Manned Space Flight
Alfred Anderman, Rockwell Space Systems Division, Downey, CA ..277-286
SESSION 4B: Inertial: Part 2

GPS Inertial Attitude Estimation via Carrier Accumulated Phase Measurements and Statistical Filtering of Phase Cycle Count Ambiguity

Haywood S. Satz & Duncan B. Cox, Jr., Mayflower Communications Co., Reading, MA, & Ronald L. Beard & G. Paul Landis, Naval Research Lab, Washington, DC 289-294

Stellar Inertial Navigation Growing with the Times Upgrading of the LN-20 Integrated Inertial Navigation System

Scott W. Lewis, Marty Hochbrueckner, and John Reeve, Litton Guidance and Control Systems, Woodland Hills, CA 295-302

Baro-Inertial Loop for the USAF Standard RLG INU

J. Stanley Ausman, Litton Guidance and Control Systems Division, Woodland Hills, CA 303-308

The MK39-A Marine Strapdown Laser Gyrocompass for the Nineties

Dr. E. Levinson & G. Erickson, Sperry Marine Inc., Charlottesville, VA 309-312

SESSION 5A: Aircraft Landing Aids

New Siting Techniques for the ILS Glide Slope

Richard H. McFarland, Ph.D., P.E., Avionics Engineering Center Ohio University, Athens, OH 315-319

GPS for Precision Approaches

Precision Approach Using GPS and GLONASS

Paul M. Creamer & E. Michael Geyer, TASC, Reading, MA 331-339

Design and Flight Test of a Differential GPS/Inertial Navigation System for Approach/Landing Guidance

Lawrence Vallot, Scott Snyder, Brian Schipper, Honeywell Systems and Research Ctr., Minneapolis, MN, Nigel Parker, Honeywell Space and Strategic Systems Operations, Clearwater, FL, and Cary Spitzer, NASA Langley Research Ctr., Hampton, VA 341-352

SESSION 5B: Interoperable Systems: Part 2

A Prelude to Interoperability-Comments on the Lack of Federal Radionavigation Plan Procedures for Assessing the Potential of a Candidate System to Fit Into the Mix of Domestic Radionavigation System

Edward L. McGann, Megapulse, Inc., Bedford, MA 355-360

The Statistical Estimation of Navigation Errors

W. A. Poor, The MITRE Corp., McLean, VA 361-369

A Proposal for a Dynamic Test Platform for Inertial Units and/or GPS

Bal N. Agamata, Diniar M. Shroff, Naval Electronic Systems Engineering Ctr., San Diego, CA and Stan C. Maki, Space Systems Division, General Dynamics Corp., San Diego, CA 371-381

Air Navigation Training at Mather Air Force Base-Synergism Between Humans and Machines

Kevin S. C. Darnell, USAF, Mather AFB, CA 383-389

SESSION 6A: Surveillance Systems: Ground-Based

An Electronically Scanned Precision Runway Monitor

Denis A. Greening & Allen I. Sinsky, Bendix Communications Division, Towson, MD 393-398

Developments in Airborne Surveillance and Control Systems

D. Burnette, R. E. Hendrix, G. Kahlon, M. Michael, P. J. Queency, and W. R. Gretsch, Westinghouse Electric Corp., Baltimore, MD 399-403

Sabreliner Flight Test and Results for Forward Looking Detection and Avoidance of Airborne Windshear

Bruce D. Mathews, Westinghouse Electric Corp., Baltimore, MD 405-410

TCAS in the 1990s

SESSION 6B: Omega/VLF Radio Navigation Surveillance Systems: Ground-Based

The 1990 Federal Radionavigation Plan and Its Impact on the Omega Navigation System

Heywood O. Shirer, U.S. Dept. of Transportation, Research & Special Programs Adm., Washington, DC 423-430

Omega System Status Update-1990

Omega/VLF Now and Into the 21st Century
 Andrew Straton, International Omega Assoc., Arlington, VA .. 437-442

Omega: GPS Integration Platform
 Darrell W. Davis, Trimble Navigation, Austin, TX ... 443-447

Integration of Omega and Satellite Navigation Systems
 Henry B. Schlachta, Canadian Marconi Co., Montreal, Canada .. 449-454

The Soviet VLF Navigation System
 Benjamin B. Peterson,
 Ctr. for Advanced Studies & Dept. of Engineering, USCG Academy, New London, CT 455-463

Pre-Registration List ... 465-470

Author Index .. 471