MIDDLE ATMOSPHERE PROGRAM

HANDBOOK FOR MAP

Volume 18

Extended Abstracts of papers presented at the MAP Symposium
November 26-30, 1984
Kyoto, Japan

Edited by
S. Kato

December 1985

Published for the ICSU Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) with financial assistance from the National Aeronautics and Space Administration under P.O. W-15,897 and Unesco Subvention 1984-1985

Copies available from SCOSTEP Secretariat, University of Illinois, 1406 W. Green Street, Urbana, Illinois 61801
TABLE OF CONTENTS

Table of Contents .. iii

I: CLIMATOLOGY OF THE MIDDLE ATMOSPHERE. 1

1.1 On the interannual variability of the middle atmosphere during winter, K. Labitzke 1

1.2 Middle atmosphere general circulation statistics, Marvin A. Geller 10

1.3 Seasonal variation of the stratospheric circulation, I. Hirota and M. Shiotani 11

1.4 Aspects of the stratospheric circulation as derived from SSU data, V. Michaelis and A. O’Neill 14

1.5 The seasonal variation of the D region as inferred from propagation characteristics of LF radio waves, T. Ishimine, T. Ishii and Y. Echizenya 15

1.7 Monthly mean values of the mesospheric wind field over Poker Flat, Alaska, B. B. Balsley and A. C. Riddle 23

1.8 Trends in upper stratospheric temperatures as observed by rocketsondes (1965-1983), K. W. Johnson and M. E. Gelman 24

1.9 Profiles of temperature and density based on extremes at 5, 10, 20, 30, and 40 km, Arthur J. Kantor, Paul Tattelman and Frank A. Marcos 28

1.10 Interannual variability of middle atmosphere during northern winter, B. K. Mukherjee, K. Indira and Bh. V. Ramana Murty 32

1.11 Connection between mesopause temperature, circulation and noctilucent clouds, Volker Gartner and Michael Memmesheimer 35

1.12 Some studies of zonal and meridional wind characteristics at low latitude Indian stations, O. P. Nagpal and Somesh Kumar 42

1.13 Temporal variations of the tropical tropopause characteristics, B. V. Krishna Murthy, K. Parameswaran and K. O. Rose 46

II: LARGE-SCALE WAVE DYNAMICS. 50

2.1 Middle atmosphere tides, Jeffery M. Forbes 50

2.2 Diurnal nonmigrating tide due to land-sea distribution, Toshitaka Tsuda and Susumu Kato 57
2.3 Middle atmosphere (60 - 110 km) tidal oscillations at Saskatoon, Canada (52°N, 107°W) during 1983/84, A. H. Manson and C. E. Meek. 61

2.4 Mesospheric winds observed by the Kyoto meteor radar, Toshitaka Tsuda and Susumu Kato 66

2.5 Semidiurnal temperature oscillation and E-region absorption over Haringhata, N. N. Purkait. 69

2.6 Normal mode Rossby waves observed in the upper stratosphere, Toshihiko Hirooka and Isamu Hirota. 72

2.7 On the interaction between the quasi-2-day wave and the mean flow, R. L. Craig, R. A. Vincent and R. A. Plumb. 76

2.8 Planetary waves-mean flow interaction in the middle atmosphere: Lidar observations and modelisation, A. Hauchecorne 80

2.9 Discrimination of a major stratospheric warming event in February-March 1984 from earlier minor warmings, K. W. Johnson, R. S. Quiroz and M. E. Gelman 89

2.10 The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEK-79, K. Indira and Bh. V. Ramana Murty 96

2.12 Seasonal changes in the structure of the stratospheric circulation, A. O'Neill and V. D. Pope 105

2.13 On the use of potential vorticity for the diagnosis of stratospheric synoptics, K. Rose, K. Labitzke and U. Kummel 109

2.14 The integrated enstrophy budget of the winter stratosphere diagnosed from LIMS data, Mark R. Schoeberl and Anne K. Smith 116

2.15 Planetary wave-mean flow interaction in the stratosphere: A comparison between the Northern and Southern Hemispheres, M. Shiotani and I. Hirota 117

2.16 Wave-mean flow interaction during the winter to summer transition in the Southern Hemisphere stratosphere, K. Yamazaki 121

2.17 A new model of resonance in the winter stratosphere, Peter H. Haynes 126

2.18 Transient response to localized episodic heating in the tropics, Murry L. Salby and Rolando R. Garcia 132

2.19 Rossby wavetrains in the stratosphere forced by localised disturbances in the troposphere, C. J. Marks, A. O'Neill and V. D. Pope 140
2.20 Low-frequency dynamics of quasi-geostrophic waves in a mid-latitude channel and the effects of tropical influence, K. K. Tung and A. J. Rosenthal. ... 145

2.21 Suppression of stationary planetary waves by internal gravity waves in the mesosphere, Saburo Miyahara. 154

2.22 Mean zonal winds and planetary waves induced by internal gravity wave packets, M. Takahashi and M. Uryu. 157

2.23 Wave-mean flow interaction in the NCAR stratospheric general circulation model, Byron A. Boville 161

2.24 Equatorial waves in the NCAR stratospheric general circulation model, Byron A. Boville 165

2.25 Vacillations induced by interference of stationary and traveling waves, Murry L. Salby and Rolando R. Garcia 169

2.26 Over-reflection of barotropic Rossby wave packet, K. Takano and M. Uryu .. 174

2.27 Effects of Rayleigh and Newtonian damping on wave-mean flow interaction, Yoshikazu Hayashi. 179

2.28 Variation of tidal winds in the ionosphere inferred from geomagnetic Sq field, M. Takeda and T. Araki. 182

2.29 Influence of geomagnetic disturbance on atmospheric circulation, Kunihiko Kodera .. 186

2.30 Behavior of neutral wind gradients at meteor heights over midlatitude stations, P. C. S. Devara, G. Chandrasekhar and M. I. Ahmed 190

III: GRAVITY WAVES AND TURBULENCE. ... 196

3.1 Radar observations of mesospheric gravity waves and turbulence at Adelaide, R. A. Vincent. ... 196

3.2 The MU radar: Current status and first results, Susumu Kato, Shoichiro Fukao, Toshitaka Tsuda and Toru Sato. 201

3.3 A comparison of the spectrum of vertical wind velocities obtained by the MST radar technique at various seasons and locations, W. L. Ecklund, B. B. Balsley and D. A. Carter. 206

3.4 Power spectra of mesospheric velocities in polar regions, P. Czechowsky and R. Ruster ... 207

3.5 Gravity wave spectra observed by Doppler radar: Comparison of a model with mesospheric observations, T. E. VanZandt, S. A. Smith and D. C. Fritts. ... 212

3.6 Instabilities and turbulence at mesospheric heights as observed by VHF radar, R. Ruster and J. Klostermeyer. 216

3.7 Observation and analysis of thunderstorm-generated gravity waves in the lower stratosphere, Daren Lu, T. E. VanZandt and W. L. Clark, Jr., 220
3.8 Gravity waves observed with GRAVNET: Saskatoon (52°N, 107°W), 1983/84, C. R. Meek, A. H. Manson and I. M. Reid. 226

3.9 Hierarchical structure of stratospheric wind fluctuations, M. D. Yamanaka and H. Tanaka. 232

3.10 Two classes of medium-scale traveling ionospheric disturbances observed with an array of HF-Doppler sounders, T. Shibata and T. Okuzawa. 237

3.11 Finite amplitude gravity waves: Harmonics, advective steepening, breaking and saturation, J. Weinstock. 242

3.12 Gravity wave characteristics in the stratosphere and mesosphere at midlatitude, M. L. Chanin and A. Hauchecorne. 247

3.13 Gravity wave vertical energy flux at 95 km, P. G. Jacob and F. Jacka. 248

3.14 Wave motions in the upper atmospheric sodium layer observed with a lidar technique, Hiroshi Kamiyama and Fumihiko Tomita. 253

3.15 Clear air turbulence and mesospheric gravity waves, R. S. Lindzen. 259

3.16 Tropospheric gravity waves observed by three closely spaced ST radars, D. A. Carter, B. B. Balsley, W. L. Ecklund, M. Crochet, A. C. Riddle and R. Garello. 260

3.17 The acoustic gravity wave induced by a point source in the middle atmosphere, Zhang Xun Jie and Xiong Nian Lu. 264

3.18 A numerical study of nonlinear interactions between mean flow and breaking internal gravity waves, Hideji Kida. 273

3.19 Effects of breaking gravity waves on the chemical composition of the mesosphere and lower thermosphere, S. Solomon and R. Garcia. 281

3.20 Local effects of gravity wave propagation and saturation, David C. Fritts. 282

3.21 The speed of wave–wave interactions in the atmosphere, K. C. Yeh and C. H. Liu. 287

3.22 A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere, Mark R. Schoeberl. 292

3.23 A further study of gravity wave induced drag and diffusion in the mesosphere, J. R. Holton and Xun Zhu. 293

3.24 Gravity waves and turbulent diffusion coefficients for constituent and heat transport in the mesosphere and lower thermosphere, Darrell F. Strobel, John P. Apruzese and Mark R. Schoeberl. 294

3.27 Comparisons of horizontal and vertical velocity spectra in the mesosphere, stratosphere and troposphere: Observations and theory, K. S. Gage, B. B. Balsley and R. Garello. 297

3.28 Determination of the atmospheric kinetic energy density height profile over Poker Flat, Alaska, B. B. Balsley and R. Garello. 298

3.29 Gravity wave motions and momentum fluxes in the middle atmosphere at Adelaide, Australia, R. A. Vincent and D. C. Fritts. 299

3.30 Balloon observations of (inertio-) gravity waves and turbulence in the middle stratosphere, H. Tanaka and M. D. Yamanaka. 302

3.31 MAP-oriented research in the People's Republic of China, Daren Lu. 303

3.32 Quantitative study on dispersion relations of TIDs observed by an HF Doppler array, M. Tsutsui and T. Ogawa. 306

3.33 HF Doppler observations of acoustic waves excited by the earthquake, T. Ichinose, K. Takagi, T. Tanaka, T. Okuzawa, T. Shibata, Y. Sato, C. Nagasawa and T. Ogawa. 310

3.34 Estimation of neutral wind velocity in the ionospheric heights by HF-Doppler technique, T. Kitamura, M. Takefu and M. Hiroshige. 319

3.36 A correlation study of structures of sporadic E ionization clouds based on VHF radio propagation measurements, K. Marubashi, S. Kainuma, T. Ishimine and Y. Shimizu. 325

3.37 Satellite observations of 557.7 nm airglow as a diagnostic technique to study the dynamics of the lower thermosphere, L. L. Cogger, R. Elphinstone and J. S. Murphree. 326

3.38 Local time distribution of the SSC-associated HF-Doppler frequency shifts, T. Kikuchi, H. Sugiuchi and T. Ishimine. 327

3.39 Vertical Stokes drifts produced by vertically propagating internal gravity waves in a compressible atmosphere, L. Coy, J. Weinstock and D. Fritts. 328

IV: TRANSPORT PROCESSES OF TRACE SPECIES AND AEROSOLS. 329

4.1 Transport processes as manifested in satellite and lidar aerosol measurements, M. P. McCormick. 329

4.2 Ruby lidar observations and trajectory analysis of stratospheric aerosols injected by the volcanic eruptions of El Chichon, O. Uchino, T. Tabata, I. Akita, Y. Okada and K. Naito. 330
4.3 Lidar observations of the El Chichon cloud in the stratosphere over Fukuoka, M. Fujiwara, T. Shibata and M. Hirono ... 337
4.4 On the long term variation of stratospheric aerosol content after the eruption of volcano El Chichon: Laser radar measurements, S. Hayashida and Y. Iwasaka ... 340
4.5 Behavior of decaying El Chichon cloud over Toyokawa, Japan (35°N) observed by 532-nm lidar, M. Takagi, A. Iwata and Y. Kondo ... 343
4.6 Comparative study of aerosols observed by YAG lidar and airborne detectors, M. Hirono, M. Fujiwara and T. Shibata ... 346
4.7 Optical properties of upper-tropospheric and stratospheric aerosols as estimated from solar aureole measurements, M. Tanaka, T. Nakajima and T. Hayasaka ... 350
4.8 Exicimer lidar measurements of ozone, T. Shibata, O. Uchino and M. Maeda ... 351
4.9 Measurement of nitric oxide from 7 to 32 km and its diurnal variation in the stratosphere, Y. Kondo, W. A. Matthews, A. Iwata and M. Takagi ... 354
4.10 Measurements of CCl₃F, CCl₂F₂, CCl₄, N₂O and SF₆ in the Northern Hemisphere stratosphere, Robert Leifer and Russell Juzdan ... 355
4.11 A dynamically based transport parameterization for one-dimensional photochemical models, J. R. Holton ... 359
4.12 Transport of trace species deduced from LIMS observations, J. C. Gille, L. V. Lyjak, A. K. Smith, P. L. Bailey, S. T. Massie and C. M. Smythe ... 360
4.13 Limb-atmospheric infrared spectrum observed on the satellite "Ohzora", A. Matsuzaki, Y. Nakamura and T. Itoh ... 363
4.14 Atmospheric concentrations and behavior of halocarbons and methane, Y. Makide, A. Yokohata and T. Tominaga ... 364
4.15 Transport characteristics in the middle atmosphere and two-dimensional modeling, Hideji Kida ... 365
4.16 The zonally averaged transport characteristics of the atmosphere as determined by a general circulation model, R. Alan Plumb ... 373
4.17 Dynamical roles of planetary waves on the winter anomaly in the middle and lower latitudes, Kohji Kawahira ... 375
4.18 Transport processes in the stratosphere: Model simulations and comparisons with satellite observations, W. L. Grose, R. E. Turner and J. E. Nealy ... 381
4.19 Ozone during sudden stratospheric warming: A three-dimensional simulation, K. Rose and G. Brasseur ... 386
4.20 Instrusion process of stratospheric ozone into the troposphere over Japan, H. Muramatsu, Y. Makino, M. Hirota and T. Sasaki. 391

4.21 An interpretation for the interannual variations of the global distribution of total ozone, Fumio Hasebe 395

4.23 Aircraft observation of NO in the troposphere at mid-latitude, Y. Kondo, W. A. Matthews, A. Iwata, Y. Morita and M. Takagi 405

4.25 A negative ion model in the lower stratosphere, Hiroto Kawamoto and Toshio Ogawa 408

4.26 Aircraft measurements of aerosols in the upper troposphere at midlatitudes, Y. Morita, M. Takagi and Y. Kondo 412

4.27 Lidar observations of the nighttime sodium layer at 33°N, Michihiro Uchiumi, Motokazu Hirono and Motowo Fujiwara 417

4.28 Ion loss processes in the stratosphere, B. S. N. Prasad and S. Chandramma 421

4.29 Vertical distribution of acetonitrile in the atmosphere, J. Ingels, D. Nevejans and E. Arijs 426

4.30 Measurements of concentrations of chlorofluoromethanes (CFMs), carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems, T. Itoh, H. Kubo, H. Honda, T. Tominaga, Y. Makide, A. Yokohata and H. Sakai 431

4.31 UV lidar measurements of the stratospheric aerosol layer and comparison with other optical data, O. Uchino 438

4.32 The recent improved ROCOZ (ROCOZ-A) ozone measurements, H. S. Lee 442

V: MAP IN THE ANTARCTICA 443

5.1 Balloon-borne observations of stratospheric aerosol in Antarctica from 1972 to 1984, D. J. Hofmann 443

5.2 Laser radar observations of the polar stratospheric aerosol layer, Y. Iwasaka, T. Hirasawa, H. Fukunishi, M. Fujiwara, R. Fujii and H. Miyaoka 450

5.3 A special ozone observation at Syowa Station, Antarctica from February 1982 to January 1983, Shigeru Chubachi 453

5.4 Observation of atmospheric minor constituents by FTIR at Syowa Station, Antarctica, Y. Makino, H. Muramatsu, S. Kawaguchi, T. Yamanouchi, M. Tanaka and T. Ogawa 458
5.5 Measurement of polar stratospheric NO\textsubscript{2} from the 23rd and 24th Japanese Antarctic Research Expedition (JARE) balloon experiments, K. Shibasaki, N. Iwagami and T. Ogawa. 461

5.6 Decomposition of CO\textsubscript{2} molecules due to auroral X-rays, K. Sekihara. 466

5.7 VHF radar observation of the middle atmosphere at Syowa Station, Antarctica, K. Igarashi, T. Ogawa, T. Tanaka, Y. Kuratani, R. Fujii and T. Hirasawa. 471

5.8 Winds in the lower thermosphere over Mawson, Antarctica, N. P. Jones and F. Jacka. 477

5.9 Balloon measurements of aerosol in the Antarctic stratosphere, Y. Morita, M. Takagi, Y. Iwasaka and A. Ono. 482

5.10 Balloon-borne observation of Aitken nuclei in the Antarctic stratosphere and troposphere, Tomoyuki Ito, Miwako Ikegami, Izuo Kanazawa and Yasunobu Iwasaka. 486

5.11 Gas-chromatographic measurements of atmospheric CF\textsubscript{2}Cl\textsubscript{2}, CFC\textsubscript{1} and N\textsubscript{2}O in Antarctica, M. Hirota, Y. Makino, S. Chubachi, H. Mufamatsu and M. Shiobara. 491

5.12 50-MHz meteor radar observation at Syowa Station, Antarctica, T. Tanaka, T. Ogawa, K. Igarashi and R. Fujii. 495

5.14 Observation of total ozone fields in the Antarctic atmosphere from TOVS of TIROS-N/NOAA, T. Yamanouchi, Sadao Kawaguchi, I. Iwashina and K. Suzuki. 502

5.15 Seasonal and diurnal variation of the atmospheric NO\textsubscript{2} at Syowa Station, Antarctica, K. Shibasaki. 506

5.16 The change of depolarization of backscattering light from the polar stratospheric aerosol layer, Y. Iwasaka. 510

5.18 Water vapor content in the polar atmosphere measured by Lyman-α/OH fluorescence method, Y. Iwasaka, T. Saitoh and A. Ono. 516

Author Index. 519