Fracture mechanics methodology

Evaluation of Structural Components Integrity

Edited by

George C. Sih
Lehigh University,
Institute of Fracture and Solid Mechanics,
Packard Laboratory Building Number 19,
Bethlehem, PA 18015, USA

Luciano de Oliveira Faria
Technical University of Lisbon,
Lisbon, Portugal
Contents

Series on engineering application of fracture mechanics VII

Foreword IX

Editors' preface XI

Contributing authors XIII

Group photograph XIV

Chapter 1. Fatigue life prediction: metals and composites 1
R. Badaliance

1.1. Introduction 1
1.2. Random spectrum load generation 2
1.3. Constant amplitude fatigue 3
1.4. Spectrum fatigue 9
References 12

Chapter 2. Fracture mechanics of engineering structural components 35
G.C. Sih

2.1. Introduction 35
2.2. Strength and fracture properties of materials 36
2.3. Simple fracture experiments 44
2.4. Design of machine and structural components 50
2.5. Ductile fracture 61
2.6. Fatigue crack propagation 70
2.7. Appendix I. Strain energy density factor in linear elasticity 86
2.8. Appendix II. Critical ligament length 87
2.9. Appendix III. Fracture toughness test 88
2.10. Appendix IV. A brief account of ductile fracture criteria 94
References 99
Contents

Chapter 3. Failure mechanics: damage evaluation of structural components
O. Orringer

1. Introduction
2. Failure of a railroad passenger car wheel
3. Describing the load environment
4. Interpreting service load data
5. Predicting safe life
6. Maintaining perspective
7. Concluding remarks
References

Chapter 4. Critical analysis of flaw acceptance methods
C.M. Branco

1. Introduction
2. Defects: distribution and non-destructive testing capability
3. Damage tolerance assessment
4. Flaw acceptance criteria
5. Conclusions
References

Chapter 5. Reliability in probabilistic design
L. Faria

1. Introduction
2. Structural integrity
3. Designing for structural integrity
4. Safety factor and reliability
References

Subject index