TABLE OF CONTENTS

SESSION 1: SMALL BREAK LOCAs - ISSUES AND PERSPECTIVES

Research Perspective for the Small-Break LOCA
 D. F. Ross, USNRC/RSR 1-1

Small Break LOCA Mitigation - A New Licensing Perspective
 B. W. Sheron and T. P. Speis, USNRC/NRR 1-17

SBLOCA--Another Perspective
 M. S. Plesset, California Institute of Technology 1-33

The Status and Future Directions of Small-Break Studies in the LOFT and Semiscale Integral System Facilities
 G. D. McPherson, USNRC/NRR; and L. P. Leach, Idaho National Engineering Laboratory 1-35

An Operational Perspective
 R. F. Wilson, G. P. U. Nuclear 1-55

Detection and Control of Potential Core Damage During a Small Break LOCA
 G. R. Thomas and E. L. Zebroski, Nuclear Safety Analysis Center 1-59

SESSION 2: INDUSTRY SELECTED SMALL BREAK TOPICS

Small Break Inadequate Core Cooling Studies in Westinghouse Pressurized Water Reactors
 C. M. Thompson and R. H. Mark, Westinghouse Electric Corporation 2-1

C-E Analysis of LOFT Test L3-6
 S. Leichtberg and J. F. Kapinos, Combustion Engineering, Inc. 2-15

Overview of B&W Small Break Analyses
 R. C. Jones and B. M. Dunn, Babcock and Wilcox Company 2-33

Overview of Exxon Nuclear Small Break LOCA Activities
 S. E. Jensen, Exxon Nuclear Company, Inc. 2-35

Review of Boiling Water Reactor Small Break Loss of Coolant Accidents
 P. M. Gururaj, S. S. Dua, and A. S. Rao, General Electric Company 2-51

xii
Small Break LOCA Development Activities at Yankee Atomic Electric Company
R. T. Fernandez, EPRI; A. Husain, R. Sundaram, Yankee Atomic Electric Company; and J. C. Turnage, Management Analysis Company

RELATED POSTER SESSION PAPERS

Multiple Aperture Small Break LOCA Analyses in LWRs
M. J. Parvin, Westinghouse Electric Corporation

Results of a BWR Small Break Simulation Test
W. S. Hwang, General Electric Company; and S. P. Kalra, Electric Power Research Institute

RELAP4 and RELAP5 Calculation of LOFT L3-5 and L3-6 Experiments; Comparison to Data
L. Schor, R. C. Harvey, J. N. Loomis, and A. Husain, Yankee Atomic Electric Company

SESSION 3: COMPUTER CODE DEVELOPMENT AND ANALYSES

The Use of the RELAP4/MOD7 Computer Code for Simulating Small Break Sequences in Pressurized Water Reactors
C. D. Fletcher, Idaho National Engineering Laboratory

RELAP5 System Modeling Capability for Small Break LOCA
V. H. Ransom, R. J. Wagner, J. A. Trapp, K. E. Carlson, D. M. Kiser, H. H. Kuo, and H. M. Chow, Idaho National Engineering Laboratory

Small Break Analysis With RETRAN-02
J. A. Naser and L. J. Agee, EPRI

TRAC Methods and Models
J. H. Mahaffy, D. R. Liles, and T. F. Bott, Los Alamos National Laboratory

A Boiling Water Reactor/6 Small Break Analysis Using TRAC-BD1
R. W. Shumway and R. R. Schultz, Idaho National Engineering Laboratory

Use of Plant Transient Models for the Investigation of Small Breaks in a PWR
A. Schaefer, W. Frisch, and W. Grzesik, Gesellschaft fur Reaktorsicherheit (GRS), Federal Republic of Germany

POSEIDON-T: Tantale Version to Treat Small Break Accidents
A. Kavenoky, G. Le Coq, J. Lewi, and P. Raymond, Centre d'Etudes Nucleaires de Saclay, France
RELATED POSTER SESSION PAPERS

Comparison of RELAP5 and RELAP4 LOFT Soft Break Experimental Safety Analysis Models
H. S. Ozmelek and D. A. Driscoll, Idaho National Engineering Laboratory

Realistic Thermal Hydraulic Transient Analysis Code for Small Break Accident of PWR
K. Kuwabara, K. Kawanishi, O. Ukai, and A. Tsuge, Mitsubishi Heavy Industries, Ltd.; S. Mori, T. Kohriyama, and H. Nagumo, Mitsubishi Atomic Power Industries, Inc., Japan

SMABRE - A Fast Running Simulator Code for Small Break Analyses of a PWR
J. Miettinen, Technical Research Centre of Finland, Finland

PIPER-ONE: An Experimental Apparatus to Evaluate Thermal-Hydraulic Transients in BWRs After Small Breaks
M. Mazzini, F. D’Auria, and P. Vigni, Istituto di Impianti Nucleari, Italy

Minicomputer Simulation of Small Breaks in LWRs
K. Wong, H. Yao, and S. Yeh, Quadrex Corporation

SESSION 4: THEORETICAL ANALYSES AND EXPERIMENTAL DATA

The Correlation of Nonequilibrium Effects in Choked Nozzle Flow With Subcooled Upstream Conditions
J. R. Fincke, Idaho National Engineering Laboratory

Heat Transfer Above The Two Phase Mixture Level Under Core Uncovering Conditions
H. C. Yeh, M. Y. Young, J. S. Chiou, and T. S. Andreychek, Westinghouse Electric Corporation

Two-Phase Natural Circulation Using Once-Through Steam Generator: Analysis and Experiment
J. P. Sursock, EPRI; and R. L. Kiang, SRI International

Experimental Investigations of Two-Phase Mixture Level Swell and Axial Void Fraction Distribution Under High Pressure, Low Heat Flux Conditions in Rod-Bundle Geometry
T. M. Anklam and M. D. White, Oak Ridge National Laboratory

Flow Visualization and Break Mass Flow Measurements in Small Break Separate Effects Experiments
C. J. Crowley and P. H. Rothe, Creare, Inc.
Two-Phase and Single-Phase Flow Behavior and Flow Visualization

On the Mechanisms of Heat Transfer in the Uncovered Region of a Bundle During the Boil-Off Transient
W. Y. Chon, NUTECH; and B. K. Sun, EPRI

SESSION 5: LARGE TESTING PROGRAMS, DATA, AND ANALYSES

Experimental Evaluation of PWR Loop Seal Behavior During Small LOCAs
R. J. Skwarek, Westinghouse Electric Corporation

Effect of Loop Seals on the Mixture Level in a PWR Reactor Vessel Under Cold Leg Break Situations
H. Ollikkala and H. Kantee, Technical Research Centre of Finland, Finland

Nuclear Power Plant Control Room Operator Responses to Simulation of Small Break Accidents
A. B. Long and J. F. O'Brien, EPRI; W. H. Sides, Nuclear Safety Analysis Center; and R. Kanazawa, Quadrex Corporation

PKL Small Break Tests and Energy Transport Mechanisms
H. Weisshaupl and B. Brand, Kraftwerk Union AG, Federal Republic of Germany

Analysis of 5% Small Break LOCA Experiment at ROSA-III
Y. Koizumi, K. Tasaka, N. Abe, and M. Shiba, Japan Atomic Energy Research Institute, Japan

The LOBI-Project Small Break Experimental Programme
W. L. Riebold and L. Piplies, Ispra Establishment, Italy

Experimental Evaluation of the Effect of Primary Coolant Pump Operation During Small Break LOCA

RELATED POSTER SESSION PAPERS

The Effects of Early Pump Trip on the Time-to-Core Uncovery for a TMI-Type Accident
J. R. Ireland, Los Alamos National Laboratory

Use of LOFT Small Break Test Data to Assess Small Break Safety Analysis Conservatisms
S. A. Atkinson and B. S. Anderson, Idaho National Engineering Laboratory
SESSION 6: CODE CALCULATIONS WITH COMPARISONS TO DATA

Experimental and Analytical Studies on Applicability of Drift Flux Model to Various Two-Phase Flow Conditions
H. Nagumo, T. Kohriyama, and S. Mori, Mitsubishi Atomic Power Industries, Inc.; K. Kawanishi, M. Kinoshita, K. Sakata, and A. Tsuge, Mitsubishi Heavy Industries, Ltd., Japan

Comparisons of TRAC-PD2 Calculations With Semiscale MOD-3 Small-Break Tests
J. S. Gilbert, M. S. Sahota, B. E. Boyack, C. P. Booker, and J. K. Meier, Los Alamos National Laboratory

TRAC-PD2 Modeling of LOFT and PWR Small Cold-Leg Breaks
T. D. Knight, G. J. E. Willcutt, Jr., and J. F. Lime, Los Alamos National Laboratory

Analysis of TLTA Small Break Tests and Comparisons to RELAP4/MOD6 Calculations
R. J. Dallman, Idaho National Engineering Laboratory; and W. D. Beckner, USNRC

RELAP5 Horizontal Stratified Flow Model With Application to a Wyle LOFT Nozzle Calibration Experiment
H. H. Kuo, H. M. Chow, and V. H. Ransom, Idaho National Engineering Laboratory

RELAP5 Calculations of the Effect of Reactor Coolant Pump Operation During LOFT and Semiscale Small-Break Experiments

RELATED POSTER SESSION PAPERS

Verifications of SOPHT, A CANDU Simulation Model, By In-Plant Full-Scale Test Data
Y. F. Chang, J. R. Sherin, and G. R. Seiveright, Ontario Hydro, Canada

Calculation of a Small Break Transient in a Large Pressurized Water Reactor Using RELAP4/MOD7, TRAC-P1A, and TRAC-PD2
P. D. Wheatley and C. A. Dobbe, Idaho National Engineering Laboratory

Application of RELAP4/MOD6 for the Simulation of LOFT L3-1 and L3-6 Small Break Experiments
S. Guntay and G. Varadi, Swiss Federal Institute for Reactor Research, Switzerland, and S. Aksan, Idaho National Engineering Laboratory
Special Small-Break Applications With TRAC
D. Dobranich, N. S. DeMuth, R. J. Henninger, and
R. D. Burns III, Los Alamos National Laboratory

RELAP5 Calculations of LOFT Small Break Experiments L3-1 and L3-7

An Analysis of the LOFT L3-6 Experiment Using the RETRAN Computer Code
C. E. Hendrix, Intermountain Technologies, Inc.

Numerical Simulation of the Accident of Three Mile Island
M. H. Perrin and P. Kastelanski, Electricité de France, France

The Analysis of L3-1 LOFT Test, A Small Break LOCA, by RELAP4-MOD6
Computer Code, Using Different Nodalizations
M. Mazzini, N. Cerullo, D. Galloni, F. Oriolo, and
B. Patti, Istituto di Impianti Nucleari, Italy

RELAP4 Calculations of Small Break LOCAs in PWRs Equipped With Upper Head Injection
J. L. LaChance, Energy, Inc.; M. Berman, Sandia National Laboratories; and N. Lauben, USNRC

Pretest and Posttest Calculations of Semiscale Test S-07-10D With the TRAC Computer Program
K. H. Duerre, G. E. Cort, and T. D. Knight, Los Alamos National Laboratory

Simulation of a BWR Fuel Bundle Under Small Break Conditions
R. E. Phillips, J. W. Spore, W. L. Weaver, and
M. M. Giles, Idaho National Engineering Laboratory