Spacecraft structures and mechanical testing

Proceedings of an international conference jointly organised by the European Space Agency, the Centre National d'Etudes Spatiales and the Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt and held at Noordwijk, The Netherlands, on 19 – 21 October 1988.
CONTENTS

Session 1: Design I - Concepts
Chairman: C. Stavrinidis, ESA/ESTEC, The Netherlands

Evaluation of tests and design factors.
C. Vidal, T. de Mollerat, Aerospatiale, Cannes, France

Environmental Testing - An approach to more cost efficiency.
E.D. Sach, MBB-Space Communications and Propulsion Systems Division, Munich, Germany

Shuttle payload design loads and guidelines.
D. Hamilton, D. Wade, NASA JSC, Houston, USA

Qualification by simulation: dream or reality.
M.P. Nieuwenhuizen, Fokker Space Division, The Netherlands

Session 2: Dynamic identification I
Chairman: E. Breitbach, DFVLR Institute for Aeroelasticity, Göttingen, Germany

Experimental identification of modal momentum coefficients and modal identity parameters of the FLECS structure.
F.R. Vigneron, R.K. Singal, Y. Soucy, Communications Research Centre, Ottawa, Canada.

Updating of finite-element model by means of normal mode parameters.
N. Niedbal, E. Klusowski, DFVLR Institute for Aeroelasticity, Göttingen, Germany; W. Luber, MBB-UF, Munich, Germany.

A review of the error matrix method (EMM) for structural dynamic model comparison.
D.J. Ewins, J. He, N. Lieven, Imperial College, University of London, England.

Parametric identification of conservative self-adjoint structures.
G. Lallement, J. Piranda, R. Fillod, Laboratoire de Mécanique Appliquée, Université de Franche-Comté, Besançon, France.

Session 3: Analysis I - Thin-walled structures
Chairman: C. Arduini, Aerospace Department, University of Rome, Italy

Overview about actual buckling calculation methods for space vehicle structures.
W. Hässler, MBB/ERNO, Bremen; H. Öry, RWTH, Aachen, Germany.
TABLE OF CONTENTS

Theoretical and experimental investigation of thin-walled aluminium panels under cyclic shear load.

P. Horst, H. Kossira, IFL, Technische Universität Braunschweig, Germany

A contribution to the stability analysis of large space structures.

E. Antona, M. di Sciuva, Department of Aerospace Engineering, Polytechnic of Turin, Italy.

Equilibrium and stability in composite thin shells.

E. Antona, Department of Aerospace Engineering, Polytechnic of Turin; U. Igardi, FIAT Research Centre, Turin, Italy.

Session 4: Design II - Damping and dynamic control

Chairman: K. Spång, Ingemansson Akustik, Gothenburg, Sweden

Viscoelastic tuned dampers for control of structural dynamics.

W.G. Halvorsen, Ingemansson Anatrol AB, Askim, Sweden

Reduction of dynamic response of spacecraft structures and payloads.

I. Kolsch, H. Baier, W. Charon, DORNIER System GmbH, Friedrichshafen, Germany.

Active structures to meet future requirements for large precision structures.

Ben K. Wada, J. Fanson, J. Garbu, G-S. Chen, JPL, Pasadena, California, USA.

System and performance analysis of a low-density actively controlled mirror for astronomic observations.

B. Laviron, MATRA Space Branch, Toulouse, France.

Analytic signals in the damping coefficient estimation.

A. Agneni, L. Balis Crema, Aerospace Department, University of Rome, Rome, Italy.

Session 5: Analysis II - Structural analysis tools

Chairman: A. de Rouvray, ESI - Engineering System International, Rungis, France

A superelement for multibody dynamics.

A. Cardona, M. Géradin, SAMTECH, Liège, Belgium.

C. Garnier, P. Rideau, Aérospatiale, Cannes, France

Employment of modal-survey methodologies in dynamic analysis procedures.

W. Heylen, T. Janter, P. Sas, K.U. Leuven - Mechanische Konstruktion en Produktie, Heverlee, Belgium.

Integration of analytical and experimental tools for optimal structural design under dynamic loads.

L.P. Bugeat, N. Roy, J.F. Imbert, A. Girard, INTESPACE, Toulouse, France.

Experiences using a major FEM package interactively for spacecraft applications.

J. Sanchez Cercos, V.Gómez Molinero, CASA Space Division, Madrid, Spain.
Session 6: Vibroacoustics

Chairman: A. Mamode, CNES, Toulouse, France

- Numerical models for exterior and interior fluid-structure interaction problems.
 J.P. Coyette, Dynamic Engineering NV, Heverlee, Belgium
 Page 675
- Calculation of noise reduction of a cylindrical shell using ASKA ACOUSTICS.
 P. Göransson, FFA - The Aeronautical Research Institute of Sweden, Bromma, Sweden
 Page 175
- Acoustic response analysis in the low-frequency domain.
 Fl. Mercier, D. Gangloff, A. Mamode, CNES, Toulouse, France
 Page 181
- Use of Lanczos vectors in structural dynamics.
 R.R. Craig, Jr., Tzu-Jeng Su, Hyoung M. Kim, University of Texas at Austin, Texas, USA.
 Page 187

Session 7: Analysis III - Damping and dynamic control

Chairman: R.G. White, ISVR-Institute of Sound and Vibration Research, University of Southampton, Highfield, UK

- Thermoelastic behaviour of large space structures: modelling and control.
 F. Bemelli-Zazzera, A. Ercoli-Finzi, P. Mantegazza, Aerospace Department, Polytechnic of Milan, Italy.
 Page 195
 W. Jarzab, IABG, Ottobrunn, Germany
 Page 201
- Evaluation of dispersive behaviour in periodic structures by discrete Fourier transform.
 S. Sgubini, A. Agneni, Aerospace Department, University of Rome, Italy.
 Page 207
- Dynamic substructuring for modular analysis and testing.
 A. Girard, L.P. Bugeat, INTESPACE, Toulouse, France.
 Page 213
 C. Arduini, G. Laneve, D. Mortari, M. Parisse, Aerospace Department, University of Rome, Italy.
 Page 219

Session 8: Design III - Hardware development

Chairman: E. Hornung, MBB/ERNO, Bremen, Germany

- The third-generation rigid solar array GSR3.
 A. Mamode, D. Gangloff, CNES, Toulouse; J.L. Bastard, Aérospatiale, Cannes; P. Auffray, Aérospatiale, Les Mureaux, France.
 Page 227
- Advances in design and testing of spacecraft structures.
 B.N. Agrawal, INTELSAT, Washington DC, USA.
 Page 233
- Telescope structure for cryogenic application.
 J.A. Massoni, Aérospatiale, Cannes, France.
 Page 239
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The service module structure of the ISO spacecraft: development and qualification programme.</td>
<td>F. Gonzalez, CASA Space Division, Madrid, Spain.</td>
<td></td>
<td>253</td>
</tr>
<tr>
<td>Session 9: Analysis IV - Fluid/structure dynamics, and panel on future development for fluid evaluation methodologies.</td>
<td>Chairman: R. Ohayon, ONERA, Châtillon, France.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid/structure interaction effects in tank structures due to sloshing and hydrodynamic ram: coupled Lagrangian/Eulerian simulations.</td>
<td>W.W. Jarzab, R. Chwalinski, W.E. Pfrang, G. Tokar, IABG, Ottobrunn, Germany.</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Modelling of liquid sloshing effects in multibody systems.</td>
<td>K. Ebert, MBB, Space Communications and Propulsion Systems Division, Munich, Germany.</td>
<td></td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Modal analysis of fluid/structure systems by parallel subspace iteration.</td>
<td>H. Wandinger, INTES mbH, Stuttgart, Germany.</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>Session 10: Dynamic identification II.</td>
<td>Chairman: J.F. Imbert, INTESPACE, Toulouse, France.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparisons of sine dwell and broadband methods for modal testing.</td>
<td>Jay-Chung Chen, JPL, Pasadena, California, USA.</td>
<td></td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Modal analysis of space structures with the Ibrahim time domain method.</td>
<td>A. Schenk, DFVLR Institute for Aeroelasticity, Göttingen, Germany.</td>
<td></td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Comparison of phase resonance, mode separation and driven-base modal identification methods applied to the FLECS structure.</td>
<td>R.K. Singal, F.R. Vigneron, T. Steele, Communications Research Centre, Ottawa, Canada.</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>A direct two-response approach for updating analytical dynamic models of structures with emphasis on uniqueness.</td>
<td>S.R. Ibrahim, Old Dominion University, Norfolk, Virginia, USA.</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Review of the ESA fracture-control policy.</td>
<td>T.K. Henriksen, ESA/ESTEC (YMD), Noordwijk, The Netherlands.</td>
<td></td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>Liquid-infiltrated C/SIC: an alternative material for hot space structures.</td>
<td>W. Krenkel, H. Hald, DFVLR Institute for Structures and Design, Stuttgart, Germany.</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Fatigue crack growth rates as a function of ΔK: variability and material property.</td>
<td>G. Marci, D.E. Castro, V. Bachmann, DFVLR Institute for Materials Research, Cologne, Germany.</td>
<td></td>
<td>331</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material properties of 2219-T851 aluminium alloy plasma welded compared to T.I.G. welding.</td>
<td>G. Banino, E. Tacchino, Aeritalia, Space Department, Turin, Italy.</td>
<td>343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session 12: Design IV - Multidisciplinary applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chairman: K. Mählbauer, IABG, Ottobrunn, Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical simulation of micrometeoroids and debris hypervelocity impacts on Columbus pressurised modules.</td>
<td>J. Dubois, F. Vogel, A. de Rouvray, Engineering System International, Rungis, France; S. Falcone, Aeritalia, Turin, Italy; H. Reimerdes, D. Alves, MBB/ERNO, Bremen, Germany.</td>
<td>685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STSA - Space Telescope Solar Array cell interconnectors: from simple approaches to complex modelling - a case study on the necessity of complex analysis.</td>
<td>Ph. Deloo, IKOSS GmbH, Germany; M. Klein, ESA/ESTEC (YMD), Noordwijk, The Netherlands; A. Wieland, AEG, Wedel, Germany.</td>
<td>693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study of GaAs solar cell interconnector.</td>
<td>R.S. Capitanio, M. Marchetti, S. Tizzi, Aerospace Department, University of Rome, Italy.</td>
<td>351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivation of improved load-transformation matrices for launcher/spacecraft coupled analysis and direct computation of margins of safety.</td>
<td>M. Klein, ESA/ESTEC (YMD), Noordwijk, The Netherlands; J.R. Reynolds, BAe, Filton, Bristol, UK; E. Ricks, NASA-MSFC, Huntsville, USA.</td>
<td>703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced spacecraft primary structure development.</td>
<td>H.S. Greenberg, Rockwell International, Seal Beach, California, USA.</td>
<td>359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session 13: Composites I - Analysis methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chairman: F. Perez, Aérospatiale, Les Mureaux, France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transverse shear stiffness of composite and sandwich finite elements.</td>
<td>K. Rohwer, DFVLR Institute for Structural Mechanics, Braunschweig, Germany.</td>
<td>363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of delamination growth.</td>
<td>H. Eggers, DFVLR Institute for Structural Mechanics, Braunschweig, Germany.</td>
<td>377</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Session 14: Testing and test facilities

Chairman: P. Brinkmann, ESA/ESTEC, Noordwijk, The Netherlands

- High-precision gravity-compensation system for the deployment test of the ERS-1 SAR antenna.
 R. Sippel, Dornier System GmbH, Friedrichshafen, Germany.
 Page 389

- Transient vibration testing of spacecraft structures: experience with multiaxial base motion and combined base-motion and point-force excitation.
 K. Mathloub, U. Schildt, W. Raasch, IABG, Ottobrunn, Germany.
 Page 395

- Transient tests for spacecraft structures.
 Page 401

- Development of a thermoacoustic test facility.
 G. Bayerdörfer, IABG, Ottobrunn, Germany.
 Page 407

- A new European vibration test facility for Ariane IV class satellites.
 Page 643

- Multi-axis transient testing - experimental investigations.
 K. Eckhardt, MBB/ERNO Raumfahrttechnik, Bremen, FRG
 G. Schmidt, Hochtemperatur Reaktorbau GmbH, Jülich, FRG.
 Page 413

Session 15: Analysis V - Multidisciplinary applications

Chairman: B. Gerber, Matra, Toulouse, France.

- Automated stress analysis of Shuttle orbiter thermal-protection system.
 J. Rowe, F. Alfonso, M. Jain, B.A. Castillo, Space Transportation and Systems Group, Rockwell International, Downey, California, USA.
 Page 423

- Structural problems of accurate inflatable surfaces.
 C. Arduini, U. Ponzì, Aerospace Department, University of Rome, Italy.
 Page 439

- Deployment simulations for third-generation solar array GSR3.
 C. Verne, M. Rouchon, Aérospatiale, Cannes, France.
 Page 681

- Induced shock loads during the separation of the Ariane-5 VEB structure.
 Page 447

- A new aspect for the use of thin-walled beams as shell stiffeners of spacecraft structures.
 F. Kiss, IKOSS GmbH, Stuttgart, Germany.
 Page 455

- J.O.E.: Jordan Optimised Eigensolver - a step towards a numerical Jordan-form analyser for control and interactive thermo-structural dynamic applications.
 C. Arduini & D. Mortari, Aerospace Department, University of Rome, Italy.
 Page 461

- Flight-mechanical environment on Ariane launch vehicle payloads.
 J. Caneilles, Arianespace, France.
 Page 467
Session 16: Design V - Antennas and solar arrays
Chairman: H. Baier, Dornier System GmbH, Friedrichshafen, Germany

Mathematical model and predictions for static and dynamic behaviour of solar array structure.

Test results on conceptual models of the large deployable antenna for mobile communications satellite.

Yuichiro Baba, Akio Iso, Yuji Tsutsumi, Kasuo Yamamoto, Space Communications Research Corporation, Tokyo, Japan.

Space Telescope solar array: nonlinear test and analysis effects.

Ph. Deloo, IKOSS GmbH; M. Klein, ESA/ESTEC (YMD), Noordwijk, the Netherlands.

Reflector antenna mechanical/electrical distortion model.

J.P. Boisset, L. Marro, Aérospatiale, Cannes, France; K. Pontoppidan, TICRA, Copenhagen, Denmark.

Session 17: Composites II - Damage characterisation and environmental effects
Chairman: H. Bergmann, DFVLR Institute for Structural Mechanics, Braunschweig, Germany.

The use of damage characterisation for life-prediction methodologies.

K.L. Reifsnider, Virginia Polytechnic Institute, Blacksburg, Virginia, USA.

Intrinsic damage and strength criteria for advanced composite laminates in space applications.

Development of graphite/magnesium composites for space applications.

Hygrothermal deformations of composite shells.

L.E. Doxsee, Jr., Department of Metallurgy and Applied Material Science, Katholieke Universiteit Leuven, Belgium.

Space environment effects on carbon/epoxy material.

P. Plotard, Aérospatiale, Saint Médard en Jalles, France.

C. Durin, CERT/DERTS, Toulouse, France.

Session 18: ESA and industry panels on structural technology issues for Ariane, Columbus, Hermes and the International Space Station.

Ariane 5 structural design and development.

A.L. Gonzalez Blazquez, ESA HQ, Paris, France

Thermal and structural analysis of Hermes.

C. Pétiaux, Avions Marcel Dassault/Breguet Aviation, Saint-Cloud, France

SDM challenges for Space Station.

Eugene G. Cowart, Project Manager, US Laboratory, The Boeing Company, Huntsville, Alabama, USA.
Key structures and mechanical issues of the European space-station and platform programme Columbus.
S. Gazey, E. Winkelhoff, MBB/ERNO, Bremen, FRG.

Session 19: Composites III - Delamination and testing.
Chairman: B. Geier, DFVLR Institute for Structural Mechanics, Braunschweig, Germany.

Worked-in holes in three-dimensional reinforced composites.
F.J. Arendts, K. Drechsler, Institut für Fluzeugbau, University of Stuttgart, Germany.

Delamination tests under static compression loading.
M. Gödke, DFVLR Institute for Structural Mechanics, Braunschweig, Germany.

Delamination tests under compression-compression and tension-compression loading.
H.C. Goetting, DFVLR Institute for Structural Mechanics, Braunschweig, Germany.

2.5D and 3D fabrics for delamination and impact resistant laminates and sandwich structures.
I. Verpoest, M. Wevers, P. de Meester, Department of Metallurgy and Applied Materials Engineering, Katholieke Universiteit Leuven, Belgium.

Special Presentation: ESTEC Test Facilities
Chairman: E.H. Classen, Head of Testing Division, ESTEC, Noordwijk, The Netherlands

The Environmental Test Centre at ESTEC (an overview).
E.H. Classen, ESTEC, Noordwijk, The Netherlands

Two years experience with the ESTEC multishaker system.
P. Bonnot, ESTEC, Noordwijk, The Netherlands

New data-handling system (MDH) for mechanical tests at ESTEC.
C. Fransen, ESTEC, Noordwijk, The Netherlands

The large European acoustic facility at ESTEC.
W.E. Gruen, W.A. Shickle, ESTEC, Noordwijk, The Netherlands

Poster Session

Tamaris - a new European facility for low-frequency multi-axis vibration simulation.

Advances in instrumentation for experimental stress and vibration analysis and its applications.
A.J. Barker & D.J. Berry, Ometron Ltd.