NUMERICAL TECHNIQUES FOR ENGINEERING
ANALYSIS AND DESIGN

Proceedings of the International Conference on Numerical Methods in
Engineering: Theory and Applications, NUMETA '87, Swansea,

VOLUME I
Edited by
G.N. PANDE & J. MIDDLETON
University College of Swansea

1987 MARTINUS NIJHOFF PUBLISHERS
a member of the KLUWER ACADEMIC PUBLISHERS GROUP
DORDRECHT/BOSTON/LANCASTER
CONTENTS

Preface (v)

SECTION D - ENGINEERING ANALYSIS AND DESIGN

D1 Coupling of Fluid Film Lubrication and Plastic Deformation: Finite Element Approach of Plastohydrodynamics in Cold Forging
P. Montmitonnet, J.L. Chenot, Ecole des Mines de Paris, Centre de Mise en Forme, Valbonne Cedex, France

D2 Rigid and Flexible Mechanisms; A Finite Element Approach based on the Conformal Rotation Vector
M. Geradin and A. Cardona, L.T.A.S., Dynamique des Constructions Mécaniques, Université de Liège, Belgium

D3 An Analysis of Dynamic Crack Propagation in a Rail Web with Longitudinal Residual Stresses
M.F. Kanninen, Southwest Research Institute, San Antonio, TX, U.S.A.

D4 Finite Element Analysis and Algorithms for Large Elastic Strains
E. Stein and N. Mueller-Hoeppe, Universitaet Hannover, Hannover, F.R.G.

D5 A Consistent Finite Element Formulation of Nonlinear Frictional Contact Problems
Jiann-Wen Ju, Robert L. Taylor and Louis Y. Cheng, Dept of Civil Engineering, University of California, Berkeley, U.S.A.

D6 A Linearization Method for Multilevel Optimization
Michael Beers, Douglas Aircraft Co., Long Beach, California
Garrett N. Vanderplaats, University of California, Santa Barbara

D7 Harbor - A Program for Horizontal Load Analysis of Marine Structures
Stanko Brcic, Civil Engineering Faculty, Beograd, Yugoslavia

D8 Shape Identification of a Free Surface with a Uniform Potential and Flux
R.A. Meric, Research Institute for Basic Sciences, Gebze, Kocaeli, Turkey

D9 A C° Elastoplastic Shell Element Based on Assumed Covariant Strain Interpolations
Peter M. Pinsky and Junho Jang, Department of Civil Engng, Stanford University, California, U.S.A.
D10 Capturing Thermal-Stress Waves via Special Purpose Hybrid Transfinite Elements and Unified Computational Formulations
Kumar K. Tamma and Sudhir B. Railkar, Mechanical and Aerospace Engineering, West Virginia University, Morgantown, U.S.A.

D.F.E. Stolle and A.N. El-Bahrawy, Dept of Civil Engineering and Engineering Mechanics, Hamilton, Ontario, Canada

D12 A Finite Element Method for a Numerical Analysis of the Deep- Drawing Process
M. Brunet, Laboratoire de Mécanique des Solides, Villeurbanne Cedex, France

D13 Theory of Degenerated Curved Shell and Locking in Shell Finite Elements
Hou-Cheng Huang, University College of Swansea, U.K.

D14 Convergence of Hierarchical Finite Elements
Jürgen Bellmann, Fachgebiet Elektronisches Rechnen im konstruktiven Ingenieurbau, Technische Universität München, West Germany

D15 Numerical Methods for Three Dimensional Analysis of Buildings
Alvaro Vale e Azevedo, LNEC - National Laboratory for Civil Engineering, Lisbon, Portugal

D16 Matrix Mechanics to Classify Non-Linear Continua
J.D. Coleman, Fluid Mechanics Division, Dept of Civil Engineering, The City University, London

D17 A Mixed Eulerian-Lagrangian Contact Element to Describe Boundary and Interface Behaviour in Forming Processes
J. Huetink, J. van der Lught, University of Twente, The Netherlands J.R. Miedema, Hoogovens IJmuiden B.V., The Netherlands

D18 Advances in Aeroelasticity
D. Sepahy, British Aerospace PLC, Air Weapons Division, Hatfield, England

D19 Cylindrical Concrete Water Tanks: Analysis and Design
V. Thevendran and D.P. Thambiratnam, Department of Civil Engineering, National University of Singapore, Singapore

D20 A Complete Procedure for the Adjustment of a Finite Element Model from the Identified Complex Eigenmodes
Q. Zhang, G. Lallement, R. Fillod, J. Piranda, Laboratory of Applied Mechanics, University of Franche-Comté, Besancon, France
D21 A General Formula of the Curved Shell Elements and Adaptive Mesh Method in the Nonconservative Finite Deformation Analysis
Y.T. Zhang, H.Y. Yang and J.Y. Zhang, Dept of Mechanics, Tianjin University, Tianjin, China

D22 On Exact and Hierarchical Finite Elements for Frame Structures
Ragnar Larsson and Nils-Erik Wiberg, Dept of Struc. Mech., Chalmers Univ. of Techn., Gothenburg, Sweden

D23 Statically and Kinematically Admissible Finite Element Formulations for Elastic-Plastic Plate Analysis
J.P. Moitinho de Almeida and J.A. Teixeira de Freitas, Departamento de Engenharia Civil, Instituto Superior Técnico, Lisboa, Portugal

D24 Turbulence Modelling and the Effects of Directional Random Waves in Computations of Nearshore Circulation
K. Anastasiou, P. Dong and D.J. Walker, Department of Civil Engineering, Imperial College of Science and Technology, London, U.K.

D25 Analysis of Gravity Dam on Soft Foundation
V. Gocevski, Hatch and Associates, Montreal, Canada
O.A. Pekau, Concordia University, Montreal, Canada

D26 A Finite Element Model for Viscoelastic Foundations Supporting Plate Structures
Joseph J. Rencis, Kwo-Yih Jong and Sunil Saigal, Center for Computer-Aided Engineering, Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, U.S.A.

D27 Computer Aided Simulation of Tooth Contact Analysis for Helical Gears with Involute Shape Teeth
C.B. Tsay, Dept of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

D28 Stress and Velocity Fields at Discharging of Silos
J. Eibl and G. Rombach, University of Karlsruhe, IfMB, Karlsruhe, Germany

D29 The Convergence Properties of a Series of R-Functions for Simple Polygonal Shapes
D.V. Altiparmakov, The Boris Kidric Institute of Nuclear Sciences, Belgrade, Yugoslavia
M.S. Milgram, Atomic Energy of Canada Ltd, Chalk River Nuclear Laboratories, Ontario, Canada
D30 Creation of Ship Body Form with Minimum Theoretical Resistance using Finite Element Method
Jan P. Michalski, Antti Pramila, Simo Virtanen, Tempere Univ. of Technology, Finland

D31 Transition Plate Bending Elements with Variable Nodes
Chang-Koon Choi and Yong-Myung Park, Dept of Civil Engng., Korea Advanced Institute of Science and Technology, Seoul, Korea

D32 A Simple Adaptive Scheme Based on a New Hybrid FE Model
J. Jirousek, IREM - Swiss Federal Institute of Technology, Lausanne, Switzerland

D33 Two-Dimensional Solidification Analysis for Twin-Roll Continuous Casting
C.G. Kang, H. Hojo, T. Saitoh and H. Yaguchi, Dept of Mechanical Engineering II, Tohoku University, Sendai, Japan

D34 Variational Formulation by Integral Equations for the Sound Radiation in a Non Uniform Flow
M. Ben Tahar and M.A. Hamdi, Division Acoustique et Vibrations Industrielles, Université de Compiègne, Compiègne Cedex, France

D35 Design and Study of Behaviour of Brush Bearing Platens by the Finite Element Method

D36 Water Pollution Control using Finite Element Model
T. Oikawa and M. Kawahara, Chuo University, Tokyo, Japan

D37 Three-Dimensional Finite Element Analyses for a Maxwell Fluid using the Penalty Function Method
Takeo Shiojima, Idemitsu Petrochemical Co. Ltd., Chiba, Japan
Yoji Shimazaki, Tokai University, Kanagawa, Japan

D38 Optimization of Continuous Prestressed Beam for Different Construction Stages
Dragan Radic, Josip Dvornik, Vinko Candrlic, Duro Dekanovic and Josko Ozbolt, Gradevinski Institut, Zagreb, Yugoslavia

D39 Slope Stability Computations with Nonlinear Failure Envelope using Generalized Procedure of Slices and Optimization Techniques
Yudhbir, P.K. Basudhar and S.K. Bhowmik, Civil Engineering Dept, Indian Institute of Technology, Kanpur, India

D40 A Computer Code for the Stress Analysis of Cyclically Symmetric Components
Y.V.L.N. Murthy and C.P. Agrawal, Bharat Heavy Electricals Ltd, Hyderabad, India
D41 A Numerical Method for the Determination of the Moment-Rotation-Capacity of Thin Walled Members
Dr.-Ing. Ch. Stutzki and Prof. Dr.-Ing. G. Sedlacek, Lehrstuhl für Stahlbau, RWTH Aachen, West Germany

D42 Some Applications of Load-Deformation States
Dr. Ing. J. Lopetegui and Prof. Dr. Ing. G. Sedlacek, Lehrstuhl für Stahlbau, RWTH Aachen, West Germany

D43 A Second Generation Structural Shape Optimization Capability Employing a Boundary Element Formulation
J.H. Kane, Worcester Polytechnic Institute, Worcester, Massachusetts, U.S.A.

D44 An Experimental and Theoretical Study of Soil-Structure Interaction in the Case of a Shallow Foundation Model
S. Labanieh and M. Boulon, Institut de Mecanique de Grenoble, St. Martin d'Hères Cèdex, France

D45 Dynamic Analysis of General Thin Shells
S. Naomis and P.C.M. Lau, Civil Engineering Dept, University of Western Australia, Nedlands, Australia

D46 A Simplified Analysis of Two Plate Bending Elements – The MITC4 and MITC9 Elements
Klaus-Jürgen Bathe, Massachusetts Institute of Technology, Cambridge, Massachusetts and Franco Brezzi, Universita di Pavia, I.A.N. del C.N.R., Pavia, Italy

D47 High-Speed Loading Analysis of Reinforced Concrete Columns
Shigekatsu Ichihashi, Kozo Keikaku Eng. Inc., Nippon Holstein Kaikan, Honcho, Nakano-ku, Tokyo, Japan and Akira Wada, Dept. of Arch. and Build., Tokyo Institute of Tech., Ookayama, Meguro-ku, Tokyo, Japan

D48 Analysis of Footing Behaviour on Homogeneous and Layered Soils
M. Al-Mukhtar, J.C. Robinet and I. Shahrour, Université des Sciences et Techniques de Lille – EUDIL, Villeneuve d'Ascq Cedex, France

D49 Fracture Mechanics for Delamination on Composite Structures in Compression
H. Chaouk and G.P. Steven, The University of Sydney, N.S.W., Australia
D50 A New Multivariable Finite Element Algorithm and a Breakable Element Algorithm for Elasto-Plastic Fracture Analysis
J.Y. Zhang, Dept of Mechanics, Tianjin University, Tianjin, China
T.R. Hsu, Dept of Mech. Engng, University of Manitoba, Winnipeg, Manitoba, Canada

D51 Preliminary Seismic Analysis and Design of Liquid Storage Tanks
R.C. Barros, Departamento de Engenharia Civil, Universidade do Porto, Porto, Portugal

D52 Optimal Design of Semiconductor Components
J.B. Waddell and J. Middleton, Dept of Civil Engineering, University College of Swansea, U.K.

D53 Reflections on Finite Element Plate Analysis
E. Hinton, University College of Swansea, U.K.

D54 Finite Element Model for Layered Plates/Shells
M.G. Rajendran, S. Rajasekaran, K. Jawahar Reddy and S. Valliammai, PSG College of Technology, Coimbatore, Tamil Nadu, India

D55 An Approach to Correct Elasto-viscoplastic Stress Predictions
T. Rodic, D.R.J. Owen, F. Damjanic, Dept of Civil Engineering, University of Wales, Swansea, U.K.

D56 Finite Element Analysis of a Viscoelastic Solid Sliding over Rigid Triangular Asperities
N. Purushothaman and I.D. Moore, University of Newcastle, N.S.W., Australia

D57 Non-Linear Analysis of Arch Dams
C. Pina and R. Camara, Laboratorio Nacional de Engenharia Civil, Lisbon, Portugal

D58 2-D Moving Grid FEM for Diffusion Problems with Chemical Reactions
P. Gerrekens and M. Hogge, Aerospace Laboratory of the University of Liège, Belgium
SECTION S - DEVELOPMENTS IN ENGINEERING SOFTWARE

S1 Are High Degree Elements Preferable? Some Aspects of the h and h-p Version of the Finite Element Method
Ivo Babuska, Institute for Physical Sciences and Technology, University of Maryland, U.S.A.

S2 Handicraft in Finite Elements
J. Blaauwendraad and A.W.M. Kok, Delft University of Tech., Delft, The Netherlands

S3 Adaptive Techniques in Finite Element Analysis
J.Z. Zhu and O.C. Zienkiewicz, Dept of Civil Engineering, University College of Swansea, U.K.
A.W. Craig, Dept of Mathematical Science, University of Durham, U.K.

S4 Aspects of Methodology for FE-Program Development
Harald Tagnfors, Dept of Structural Mechanics, Chalmers Univ. of Technology, Göteborg, Sweden

S5 The Significance and Practice of Rank Estimation in Structural Dynamics Identification Algorithms
John Brandon, Dept of Mechanical and Manufacturing Systems Engineering, University of Wales Institute of Science and Tech., Cardiff

S6 The Use of Tension Parameter in Surface Modelling
Da-Pan Chen and Tser-Liang Lin, Dept of Mechanical Engineering National Chiao Tung University, Hsinchu, Taiwan, Republic of China

S7 Direct Design Versus Range Selection Algorithms used in Mechanical Component Software
Dr. J. Vogwell, University of Bath, U.K.

S8 Analog/Hybrid and Digital Simulations in Civil Engineering
Hamdy Youssef, Concordia University, Dept of Civil Engineering, Montreal, Quebec, Canada

S9 Curve Design using Hierarchical Finite Element Forms
S. Virtanen, Tampere University of Technology, Tampere, Finland

S10 Integration of FEM, Optimization, and CAD on Microcomputers
Gu Yuanxian and Cheng Gengdong, Research Institute of Engineering Mechanics, Dalian Institute of Technology, Dalian, China
S11 An Adaptive HP-Version in the Finite Element Method
Ernst Rank, A.G Siemens, Corporate Research and Technology, München, West Germany

S12 A Finite Element Transitional Mesh Generation Technique
L. Carter Wellford, Jr. and M.R. Gorman, University of Southern California, Los Angeles, California, U.S.A.

S13 Expert System for Material Selection
James K. Blundell, University of Missouri-Columbia/Kansas City
R. Bryan Greenway, Design Productivity Center, Kansas City, U.S.A.

S14 A Dynamically Partitioned Out-of-Core Skyline Solver for Micro-Computers
A.J. du Toit and W.S. Doyle, Dept of Civil Engineering, University of Cape Town, S. Africa

S15 A Generalised A-Posteriori Analysis of the Discretization Error in Numerical Solutions to Linear Problems
D.W. Kelly, University of New South Wales, Kensington, N.S.W., Australia

S16 Analysis of Cantilever Sheet Piling in Stratified Cohesive Soils
Jay S. DeNatale and German A. Ibarra-Encinas, The University of Arizona, Tucson, Arizona, U.S.A.

S17 A Geometrical Continuous Remeshing Procedure for Application to Finite Element Calculation of Non-Steady State Forming Processes
J.P. Cescutti and J.L. Chenot, Ecole des Mines de Paris, Centre de Mise en Forme, Valbonne Cedex, France

S18 Improved Systolic Designs for the Iterative Solution of Linear Systems
D.J. Evans and K. Margaritis, Dept of Computer Studies, University of Technology, Loughborough, Leicestershire, U.K.

S19 Superconvergence and Finite Element Post Processing
G.F. Carey and R.J. MacKinnon, The University of Texas at Austin, Austin, Texas, U.S.A.

S20 Automatic Generation of Shape Function Routines
Peter Bettess, School of Marine Technology, University of Newcastle-upon-Tyne, U.K. and Jacqueline A. Bettess, Computer Centre, University of Durham, U.K.

S21 The Generation of Hybrid Structured-Unstructured Grids
N.P. Weatherill, Institute for Numerical Methods in Engineering, University College of Swansea, U.K.