Chapter I. HYDROGENIC EMITTERS IN MODERATELY DENSE PLASMAS

Theory of Hydrogen Stark Broadening.
J. Seidel ... 3

The Microfield Formulation of Spectral Line Broadening.
J.W. Dufty ... 41

Influence of Different Ion Dynamical Effects on Lyman Lines.
D. Voslamber and R. Stamm .. 63

Theory Including Non-Adiabatic Effects of Ion Dynamics.
D. Voslamber .. 73

Is Ion Dynamics Really so Important?
G. Peach ... 91

Stark Broadening of the Hydrogen Resonance Line Ly in Comparison
to Lα and Lβ.
M. Geisler, K. Grützmaaher, and B. Wende 103

Long Path Absorption Measurements of the Pressure-Broadened
Balmer-Alpha Profile.
D.D. Burgess, G. Kolbe, and C.St.Q. Playford 119

The Influence of the Gas Temperature on the Central Part of the
Stark Profile of Balmer Beta.
H. Esrom and V. Helbig ... 135

Investigation of the Stark Broadening of Balmer Beta.
K.-P. Nick and V. Helbig .. 141

Experimental Stark Profiles of He II 3203 and He II 4686.
J.E. Bernard, F.L. Curzon, and A.J. Barnard 153

Some Comments on Hydrogenic Lines in a Plasma - Shifts,
Asymmetries and Widths.
T.L. Pittman and D.E. Kelleher 165
Chapter II. TWO- AND MORE-ELECTRON EMITTERS IN MODERATELY DENSE PLASMAS

Experimental Study of Plasma Broadened He I Lines With Forbidden Components.
V. Helbig and H. Ehrich .. 179

Stark Broadening of Isolated Ion Lines by Plasmas: Theory.
J.D. Hey and P. Breger .. 191

Stark Broadening of Isolated Ion Lines by Plasmas: Application of Theory.
J.D. Hey and P. Breger .. 201

M.S. Dimitrijević and N. Konjević 211

N. Konjević and M.S. Dimitrijević 241

Stark Parameter Dependence on the Ionization Potential.
J. Purić, O. Labat, and I. Lakicević 249

Stark Broadening and Shift of Cs I and Al II Lines.
I.S. Lakicević, J. Purić, and M. Cuk 253

Experimental and Calculated Xe I and Xe II Stark Widths.
A. Lesage, M.H. Miller, J. Richou, and Truong-Bach 257

Stark Broadening of Krypton Lines.
T. Brandt, V. Helbig, and K.-P. Nick 265

The Broadening of Spectral Lines by Autoionization, Radiative Transitions, and Collisions.
J. Davis and V.L. Jacobs ... 275

The Effect of Electric Fields on Autoionization Resonances.
D.E. Kelleher .. 281
Chapter III. HIGHLY IONIZED EMITTERS IN EXTREMELY DENSE PLASMAS

Diagnosis of High-Density Laser Compressed Plasmas Using Spectral Line Profiles.
- **A. Hauer** ... 295

Line Shapes in High Density Plasmas.
- **R.W. Lee** ... 333

Line Shapes in the Simulation of Radiative Transfer.
- **R.W. Lee** ... 359

Emission Line Shapes From Laser Compression Plasmas.
- **J. Kilkenny, S. Veats, A. Shalom, and R.W. Lee** 367

Doppler Profiles of XUV Emission From Dense Plasmas.
- **D.D. Burgess, D. Everett, and N.J. Peacock** 373

Stark Broadening in Hot, Dense, Laser-Produced Plasmas: Full Coulomb Electron Interactions.
- **L.A. Woltz, R.F. Joyce, and C.F. Hooper, Jr.** 379

Intermediate Coupling Effects on Helium-Like Ion Lines From Dense Plasmas.
- **H.R. Griem and P.C. Kepple** ... 391

Broadening of Hydrogenic X Rays Emitted by a Laser-Produced Plasma.
- **Nguyen Hoe** ... 397

Stark Broadening of Isolated Lines From High-Z Emitters in Dense Plasmas.
- **J.C. Weisheit and E.L. Pollock** ... 433

Second-Order Corrections to Thermal Microfield in Dense Plasmas.
- **B. Held and C. Deutsch** ... 447

Stark Effect in Strong Non-Homogeneous \(E \) Field.
- **D. Lambert** ... 457
Chapter IV. LASER SPECTROSCOPY OF PLASMAS AND PLASMA SATELLITES

Laser Spectroscopy of Plasmas in Application to Measurements of Line Shapes and Collision Rates.
D.D. Burgess ... 473

Investigation of Plasma-Satellites by Laser-Fluorescence Spectroscopy.
H.-J. Kunze ... 517

The Last Truth on Plasma Satellites?
H.W. Drawin ... 527

The Problem of Molecular Lines in the Study of Plasma Satellites.
A. Piel ... 577

Chapter V. LINE BROADENING BY FOREIGN GASES

Model Potential Calculations for Alkali-Rare-Gas Systems. Comparison With Experiment.
F. Masnou-Seeuws .. 593

B. Lévy ... 615

Quasimolecular Interpretation of Collision Effects on Atomic Forbidden Transitions.
J. Szudy, J.P. Visticot, and B. Sayer 631

A. Royer ... 651

Multiple Perturber Satellites: Theory and Experiment.
J. Kielkopf ... 665
Blue Satellite of the K(5P-4S) Doublet Perturbed by Neon.
M. Delhoume, W-U. L. Brillet, F. Masnou-Seewae, N. Feautrier,
and F. Rostas ... 689

Interatomic Potentials for Hg-Kr From Measurements of Pressure
Broadening of the Hg-2537 Å Line.
T. Grycuk ... 695

Study of Collision-Induced Absorption in Dipole Electronic
Transitions of Alkali-Rare Gas Atom Pairs.
E. Czuahaj ... 705

Experimental Study of Two-Photon Absorption of Sodium Perturbed
by Collisions With Noble Gas Atoms.
R. Granier, G. Charton, and J. Granier .. 721

Broadening and Shifts of the Resonance Lines of Neutral and
Signly Ionized Mg, Ca and Sr.
R.G. Giles and E.L. Lewis .. 733

Pressure Broadening and Pressure Shift of the Cadmium Inter-
combination Line at $\lambda =$ 3261 Å.
H.A. Schuessler, K.-J. Dietz, P. Dabkiewicz, H.J. Kluge, T. Kühl 741

Quasi-Static Wings of K Spectral Lines Broadened by Cs.
Č. Vadla, R. Beuc, and M. Movre .. 751

Observation of Non-Lorentzian Spectral Lineshapes in Na-Noble
Gas Systems.
R.E. Walkup, D.E. Pritchard, and A. Spielfiedel 757
Chapter VI. EXCIMERS

Alkali-Rare Gas Excimers.
F. Rostas ... 767

A Model for the Rare Gas Excimers With Spin Orbit Coupling.
I. Interaction Potential. II. Dipole Moment.
O. Vallée, N. Tran Minh, and J. Chapelle 789

Synchrotron Radiation Experimental Determination of Rare Gas
Excimer States: Comparison With Recent Theoretical Calculations.
M.C. Castex, O. Dutuit, J. Le Calvé, and M. Morlais 803

VUV Emission Spectroscopy of Rare Gas Excimers After keV-Electron
Impact Excitation.
H. Schmoranzer and R. Wanik 815

Determination of Excimer Potential Curves From VUV-Fluorescence
Intensities.
H. Schmoranzer, R. Wanik, and H. Krüger 819

Chapter VII. RESONANCE BROADENING

Self-Broadening in Metal Vapors.
G. Pichler ... 827

Quasistatic Self-Broadening of Li and Na First Resonance Lines.
D. Veža and G. Pichler 845

Triplet Satellite Bands in the Very Far Blue Wings of the Self-
Broadened Alkali D Lines.

Discrepancy With Theoretical Resonance Broadening on the
He Line at 2.06 μm.
R. Damaschini and J. Vergès 857
Chapter VIII. COLLISIONAL REDISTRIBUTION OF RESONANCE RADIATION
AND RELATED PHENOMENA

Recent Developments in Line Shape Theory.
A. Ben-Reuven .. 867

Collisional Redistribution of Resonance Radiation.
K. Burnett ... 885

Collisional Redistribution of Strong Resonance Radiation.
G. Nienhuis ... 899

Collisional Depolarization and Redistribution of Laser Radiation
in Near Resonance With a $^2S_{1/2} \leftrightarrow ^2P$ - Transition.
W. Behmenburg and V. Kroop ... 921

Far Wing Depolarization of Light: Generalized Absorption Profiles.
P. Thomann, K. Burnett, and J. Cooper 929

Power-Broadening of the Na-D Lines in a Flame Irradiated With
a Pulsed Tunable Dye Laser.
R.A. van Calcar .. 937

Unified Theory of Pressure Broadened Absorption Spectra in Strong
Radiation Fields.
Y. Rabin and S. Mukamel .. 945

Line Broadening Caused by Laser Linewidth.
K. Wódkiewicz ... 955

An Experimental Study of the Collision Broadening of the Na-D
Doublet Lines in Flames and Absorption Cells With Ar and N$_2$
Perturbers.
M.J. Jongerius .. 963

Structured Continuum in the Fluorescence Spectrum of Cs$_2$.
R.J. Exton, G. Pichler, and J. Tellinghuisen 983

Light-Induced Collisional Energy Transfer.
P.E. Toschek .. 997
Collision Induced Pair Absorption in Pure and Mixed Alkalis.
R. Hotop and K. Niemax ... 1019

Collision Induced Scattering of Light in Mercury Vapour:
Some Experimental and Theoretical Results.
A. Borysow, M. Findeisen, T. Gryeuk, and W. Komar 1027

Inelastic Collisions Between Selectively Excited Rubidium
Atoms and Ground State Rubidium Atoms Observed by Laser
Induced Fluorescence.
H.A. Schuessler and R.H. Hill, Jr. 1033

Chapter IX. DOPPLER-FREE TECHNIQUES

Resonance Fluorescence From Single Ions at Rest.
W. Neuhauser, M. Hohenstatt, P.E. Tosahek, and H. Dehmelt 1045

Broadening and Shift of High Rydberg States Measured by Doppler-
Free Two-Photon Spectroscopy.
B.P. Stoicheff, D.C. Thompson, and E. Weinberger 1071

Broadening and Shift Measurements of Doppler-Free Two-Photon
Lines With the Thermionic Diode.
K. Niemax and K.-H. Weber ... 1083

The Measurement of Collisional Lineshapes Using Optical Echo
Techniques.
T.W. Mossberg, R. Kachru, K.P. Leung, E. Whittaker, S.R. Hartmann 1093

Collision Studies of Hα Fine Structure Lines With High-Resolution
Laser Spectroscopy.
E.W. Weber ... 1113

Effect of Quenching Collisions on Density Shift and Broadening.
E.W. Weber and K. Jungmann .. 1123

Plasma Shift and Broadening of Resolved Hα Fine Structure Lines.
E.W. Weber and H.J. Humpert .. 1133
Chapter X. RELATED TOPICS

Light Scattering From a Non-Equilibrium Fluid.
J.W. Dufty ... 1143

Validity of Semiclassical Small Angle Scattering Amplitudes for the Calculation of Elastic Collision Kernels With Lennard-Jones Intermolecular Potentials.
S. Avrillier, C.J. Bordé, J. Piaart, and N. Tran Minh 1159

Modification of Microwave Radiation due to Electron-Molecule Collisions.
S.C. Mehrotra .. 1183

Author Index ... 1190

Subject Index ... 1192