Experimental Political Science and the Study of Causality

From Nature to the Lab

REBECCA B. MORTON
New York University

KENNETH C. WILLIAMS
Michigan State University

CAMBRIDGE UNIVERSITY PRESS
Contents

Acknowledgments

I INTRODUCTION

1 The Advent of Experimental Political Science

1.1 The Increase in Experimentation in Political Science

1.2 Is the Increase in Experimentation Real?

1.2.1 How "New" Is Experimental Political Science?

1.2.2 Political Science Experiments in the 1950s and 1960s

1.2.3 The Rise in Experimentation in the 1970s and 1980s

1.2.4 Not New Research, But New in Prominence

1.2.5 Is It the Artificiality?

1.3 Why Experiments Have Received More Interest

1.3.1 Is It Technology?

1.3.2 Inability of Existing Data to Answer Important Causal Questions

1.3.3 New Research Questions

1.4 Is Political Science Now an Experimental Discipline?

1.5 Why Study Causality?

1.5.1 What Is Experimental Reasoning?

1.5.2 Using Experiments as a Guide for Research Broadly

1.6 The Welcoming Discipline

1.6.1 Heritage Matters

1.6.2 The Advantages of the Welcoming Nature

1.6.3 The Disadvantages of the Welcoming Nature

1.7 Purpose of This Book

1.8 Our Audience

1.9 Plan of This Book
II EXPERIMENTAL REASONING ABOUT CAUSALITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Experiments and Causal Relations</td>
<td>31</td>
</tr>
<tr>
<td>2.1</td>
<td>Placing Experimental Research in Context</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Technical Background</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Causes of Effects Versus Effects of Causes</td>
<td>33</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Causes of Effects and Theoretical Models</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Effects of Causes and Inductive Research</td>
<td>35</td>
</tr>
<tr>
<td>2.3.3</td>
<td>An Example: Information and Voting</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>Setting Up an Experiment to Test the Effects of a Cause</td>
<td>41</td>
</tr>
<tr>
<td>2.4.1</td>
<td>The Data We Use</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2</td>
<td>What Is an Experiment?</td>
<td>42</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Examples of Information and Voting Experiments</td>
<td>50</td>
</tr>
<tr>
<td>2.4.4</td>
<td>What Is Not an Experiment?</td>
<td>52</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Experimental Versus Observational Data</td>
<td>56</td>
</tr>
<tr>
<td>2.5</td>
<td>Chapter Summary</td>
<td>57</td>
</tr>
<tr>
<td>2.6</td>
<td>Appendix: Examples</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>The Causal Inference Problem and the Rubin Causal Model</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>Variables in Modeling the Effects of a Cause</td>
<td>76</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The Treatment Variable</td>
<td>76</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Variables That Affect Treatments</td>
<td>76</td>
</tr>
<tr>
<td>3.1.3</td>
<td>The Dependent Variable</td>
<td>77</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Other Variables and Variable Summary</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Manipulations Versus Treatments</td>
<td>79</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Why Are Manipulations Sometimes Called Treatments?</td>
<td>79</td>
</tr>
<tr>
<td>3.2.2</td>
<td>When Treatment Variables Cannot Be Manipulated</td>
<td>80</td>
</tr>
<tr>
<td>3.2.3</td>
<td>When Manipulations Affect Treatments Only Indirectly</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>The Rubin Causal Model</td>
<td>84</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Defining Causal Effects</td>
<td>84</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Causal Inference Problem and Observational Data</td>
<td>85</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Causal Inference Problem and Experimental Data</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Design Versus Analysis</td>
<td>93</td>
</tr>
<tr>
<td>3.5</td>
<td>Measures of Causality</td>
<td>94</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Average Unconditional Treatment Effects</td>
<td>94</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Average Conditional Treatment Effects</td>
<td>95</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Other Treatment Effects</td>
<td>95</td>
</tr>
</tbody>
</table>
3.6 The Stable Unit Treatment Value Assumption 96
 3.6.1 What Does It Mean for δ_i to Represent the Causal Effect? 96
 3.6.2 Implications of SUTVA for Inductive Experimental Work 98
3.7 Advantages of RCM 99
3.8 Chapter Summary 99

4 Controlling Observables and Unobservables 101
4.1 Control in Experiments 101
 4.1.1 Controlling Observables in Experiments 101
 4.1.2 Controlling Unobservables in Laboratory Experiments 102
4.2 Control Functions in Regressions 108
 4.2.1 When an Observable Variable Cannot Be Controlled or Manipulated 108
 4.2.2 A Digression on Dealing with Voting as a Dependent Variable 109
 4.2.3 The Switching Regression Model 110
 4.2.4 Selection on the Observables or Ignorability of Treatment 111
 4.2.5 How Reasonable Is the Ignorability of Treatment Assumption? 113
 4.2.6 When Ignorability of Treatment Holds but Observables Affect Potential Choices 115
 4.2.7 Political Science Examples 116
 4.2.8 Using Regression Control Methods with Experimental Data 126
4.3 Using Time to Control for Confounding Unobservables 127
 4.3.1 Time and Data Structures 127
 4.3.2 Panel Data and Control of Unobservables 128
 4.3.3 Political Science Example: A Panel Study of Turnout 130
4.4 Propensity Scores in Regressions 131
4.5 Use of Controls and Propensity Scores Without Regression 133
4.6 Control by Matching 134
 4.6.1 Propensity Scores and Matching 134
 4.6.2 Nonparametric Preprocessing and Matching 135
 4.6.3 Political Science Example 136
4.7 Causal Effects Through Mediating Variables 137
4.8 Chapter Summary 138
5 Randomization and Pseudo-Randomization 141
 5.1 RCM-Based Methods and Avoiding Confounding 141
 5.2 The Ideal Instrumental Variable 142
 5.2.1 Definition of an Ideal IV 142
 5.2.2 Is Random Assignment of Manipulations in Experiments an Ideal IV? 144
 5.3 When Assignment of Treatment Is Not Independent of Potential Choices 145
 5.3.1 Potential Violations of Independence in Random Assignment 145
 5.3.2 Using Experimental Design to Solve Independence Problems 150
 5.3.3 Solving Independence Problems After an Experiment or with Observational Data 153
 5.4 When an IV or Assignment Is Not a Perfect Substitute for Treatment 155
 5.4.1 Potential Problems of Substitutability in Random Assignment 155
 5.4.2 Using Experimental Design to Solve Substitutability Problems 162
 5.4.3 Solving Substitutability Problems After the Experiment 172
 5.5 Missing Data 182
 5.5.1 When Might Data Be Missing? 182
 5.5.2 Using Experimental Design to Reduce Missing Data 183
 5.5.3 Dealing with Missing Data After an Experiment 183
 5.6 Manipulation and Time 192
 5.7 Chapter Summary 193
 5.8 Adding in Formal Theory 195

6 Formal Theory and Causality 196
 6.1 What Is a Formal Model? 196
 6.2 Using an RCM Approach with Predictions from Nonformal Models 197
 6.2.1 The Theoretical Consistency Assumption 197
 6.2.2 Addressing the Theoretical Consistency Assumption 199
 6.3 Using an RCM Approach with Predictions from Formal Models 201
 6.4 The FTA Process 202
 6.4.1 Essence of FTA 202
 6.4.2 Theory and Stress Tests 204
Contents

IV ETHICS

11 History of Codes of Ethics and Human Subjects Research 403
 11.1 Codes of Ethics and Social Science Experiments 403
 11.2 Early Professional Codes of Ethics 406
 11.3 The Nuremberg Code 407
 11.4 Regulation in the United States 408
 11.4.1 The Impetus for Regulation 408
 11.4.2 The Belmont Report and the Common Rule 409
 11.4.3 The Common Rule and Social Science Research 412
 11.4.4 The Current System 417
 11.5 Regulations in Other Countries 419
 11.6 Cross-Country Research and Regulations 420
 11.7 Chapter Summary 421
 11.8 Appendix A: Code of Federal Regulations: Title 45,
 Public Welfare, Department of Health and Human
 Services, Part 46, Protection of Human Subjects 422
 11.8.1 Subpart A: Basic HHS Policy for Protection of
 Human Research Subjects 423
 11.8.2 Subpart B: Additional Protections for Pregnant
 Women, Human Fetuses, and Neonates Involved
 in Research 439
 11.8.3 Subpart C: Additional Protections Pertaining to
 Biomedical and Behavioral Research Involving
 Prisoners as Subjects 444
 11.8.4 Subpart D: Additional Protections for Children
 Involved as Subjects in Research 447
 11.9 Appendix B: Categories of Research That May Be Reviewed
 by the Institutional Review Board (IRB) Through an
 Expedited Review Procedure 451
 11.9.1 Applicability 451
 11.9.2 Research Categories 452

12 Ethical Decision Making and Political Science Experiments 455
 12.1 Expected Benefits and Costs in Experiments 455
 12.1.1 Expectations, Probabilities, and Magnitudes 455
 12.1.2 Expected Benefits from Experimental Research 456
 12.1.3 Expected Costs from Experimental Research 462
 12.1.4 IRB Assessment of Benefits and Risks 473
12.2 Other Criteria in the Common Rule 485
 12.2.1 Subject Selection 485
 12.2.2 Informed Consent 493
12.3 Chapter Summary 497
12.4 Appendix: Sample Consent Letter for Laboratory Experiments 498

13 Deception in Experiments 500
 13.1 Deception in Political Science Experiments 500
 13.2 What Is Deception? 501
 13.3 Types of Deception 502
 13.3.1 Deceptive Purpose 502
 13.3.2 Deceptive Materials and Information 502
 13.3.3 Deceptive Identities 503
 13.4 Arguments for Deception 504
 13.4.1 Control over Perceived Artificiality and Subjects' Motivations 504
 13.4.2 Experiments on Rare Situations 505
 13.4.3 Deception as a Method of Lowering Costs of Experiments 506
 13.4.4 Deception as an Educational Benefit 506
 13.4.5 The Societal Costs of Prohibiting Deception 507
 13.4.6 Deception Is Part of Everyday Life 507
 13.5 Objections to Deception 508
 13.5.1 Ethical Concerns 508
 13.5.2 Methodological Concerns 508
 13.6 Effects of Deception 510
 13.6.1 Are Harms from Deception Minimal? 510
 13.6.2 Does Deception Affect Subjects' Behavior in Future Experiments? 511
 13.6.3 Debriefing and Removing Effects of Deception 515
 13.7 The Conditional Information Lottery Procedure and Avoiding Deception 517
 13.8 How Much Deception Should Be Allowed in Political Science Experiments? 519
 13.9 Chapter Summary 520

V CONCLUSION

14 The Future of Experimental Political Science 525
 14.1 The Promise of Collaboration 525
 14.2 The Difficulties Ahead 528
15 Appendix: The Experimentalist’s To Do List 530

15.1 The Target Population and Subject Pools 530
15.1.1 Nonspecific Target Populations 530
15.1.2 Specific Target Populations 531

15.2 Location of the Experiment 532
15.2.1 Traditional Laboratory Experiments 532
15.2.2 Lab-in-the-Field Experiments 532
15.2.3 Internet Experiments 532
15.2.4 Survey Experiments 533
15.2.5 Field Experiments 533

15.3 Motivation and Recruitment of Subjects 533
15.3.1 Financial Incentives Related to Subjects’ Choices 533
15.3.2 Other Types of Incentives Related to Subjects’ Choices 534
15.3.3 Motivating Subjects in Other Ways and the Role of Frames and Scripts 534
15.3.4 Subject Recruitment 535

15.4 Relationship to Theory, Manipulations, and Baselines 535
15.4.1 When Working from a Formal Theory 535
15.4.2 When Working from a Nonformal Theory or a Prediction That Is Inspired by a Formal Theory 536

15.5 Operationalizing Random Assignment 536
15.5.1 Random Assignment in Laboratories, Both Traditional and in the Field 536
15.5.2 Random Assignment Outside the Laboratory 537

15.6 Considering Ethical Issues Involved in the Experiment and Securing IRB Approval 537
15.6.1 Benefit and Cost Evaluation 537
15.6.2 IRB Approval 538
15.6.3 Deception 538

15.7 Post-Experimental Analysis 538

References 539

Author Index 571

Subject Index 581