FISHERY PRODUCTS
Quality, safety and authenticity

Edited by

Hartmut Rehbein
Jörg Oehlenschläger

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Contents

List of contributors xi
Preface xiii
Introduction xv

Chapter 1 Basic facts and figures 1
Jörg Oehlenschläger and Hartmut Rehbein

1.1 Introduction 1
1.2 World fishery production 1
1.3 Categories of fish species 3
1.4 Fish muscle 4
1.5 Nutritional composition 4
1.6 Vitamins 10
1.7 Minerals 15
1.8 Post mortem changes in fish muscle 15
1.9 References and further reading 17

Chapter 2 Traditional methods 19
Peter Howgate

2.1 Introduction 19
2.2 TVB-N 20
2.3 Methylamines 23
2.4 Volatile acids 29
2.5 Volatile reducing substances 30
2.6 Indole 31
2.7 Proteolysis and amino acids 32
2.8 pH 33
2.9 Refractive index of eye fluids 33
2.10 Discussion and summary 34
2.11 References 35

Chapter 3 Biogenic amines 42
Rogério Mendes

3.1 Introduction 42
3.2 Factors affecting amine decarboxylase activity 44
3.3 Safety aspects 47
3.4 Quality assessment 49
Contents

3.5 Regulatory issues 54
3.6 Methods of biogenic amine determination 55
3.7 References 59

Chapter 4 ATP-derived products and K-value determination 68
Margarita Tejada
4.1 *In vivo* role of nucleotides 68
4.2 *Post mortem* changes 69
4.3 Methodology for evaluating the K-value or related compounds 79
4.4 Conclusions 81
4.5 References 81

Chapter 5 VIS/NIR spectroscopy 89
Heidi Anita Nilsen and Karsten Heia
5.1 Introduction 89
5.2 Analytical principles and measurements 89
5.3 Constituents: assessment of chemical composition 92
5.4 Freshness and storage time 96
5.5 Authentication 98
5.6 Safety 98
5.7 Other quality parameters 99
5.8 Summary and future perspectives 100
5.9 References 101

Chapter 6 Electronic nose and electronic tongue 105
Corrado Di Natale and Gudrun Ólafsdóttir
6.1 Introduction to the electronic nose and olfaction 105
6.2 Application of the electronic nose and electronic tongue 106
6.3 Colorimetric techniques, optical equipment and consumer electronics 108
6.4 Classification of fish odours 109
6.5 Quality indicators in fish during chilled storage: gas chromatography analysis of volatile compounds 111
6.6 Application of the electronic nose for evaluation of fish freshness 114
6.7 Combined electronic noses for estimating fish freshness 116
6.8 Conclusions and future outlook 119
6.9 References 120

Chapter 7 Colour measurement 127
Reinhard Schubring
7.1 Introduction 127
7.2 Instrumentation 128
7.3 Novel methods of colour evaluation 130
7.4 Colour measurement on fish and fishery products 131
7.5 Summary 159
7.6 References 159

Chapter 8 Differential scanning calorimetry 173
Reinhard Schubring
8.1 Introduction 173
8.2 Principle of function of the instruments 174
8.3 First applications of DSC on fish muscle and other seafood 178
8.4 Recent applications of DSC for investigating quality and safety 181
8.5 Summary 204
8.6 References 204

Chapter 9 Instrumental texture measurement 214
Mercedes Careche and Marta Barroso
9.1 Introduction 214
9.2 Instrumental texture 216
9.3 Texture measurement for quality classification or prediction 229
9.4 Conclusions 231
9.5 References 231

Chapter 10 Image processing 240
Michael Kroeger
10.1 Introduction 240
10.2 Quality characteristics from images 241
10.3 Spectral signature of images 243
10.4 Elastic properties from images 244
10.5 Analysis of image data 244
10.6 Results and discussion 245
10.7 Freshness determination from images 246
10.8 Firmness information from images 246
10.9 Conclusions 249
10.10 References 249

Chapter 11 Nuclear magnetic resonance 252
Marit Aursand, Emil Veliyulin, Inger B. Standal, Eva Falch, Ida G. Aursand and Ulf Erikson
11.1 Introduction 252
11.2 Magnetic resonance imaging 253
11.3 Low-field NMR 257
11.4 High-resolution NMR 259
11.5 The future of NMR in seafood 265
11.6 References 266
<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Time domain spectroscopy</th>
<th>273</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>273</td>
</tr>
<tr>
<td>12.2</td>
<td>Measurement system</td>
<td>275</td>
</tr>
<tr>
<td>12.3</td>
<td>Time domain reflectometry measurements</td>
<td>278</td>
</tr>
<tr>
<td>12.4</td>
<td>Conclusions</td>
<td>283</td>
</tr>
<tr>
<td>12.5</td>
<td>References</td>
<td>285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Measuring electrical properties</th>
<th>286</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>286</td>
</tr>
<tr>
<td>13.2</td>
<td>Fischtester</td>
<td>287</td>
</tr>
<tr>
<td>13.3</td>
<td>Torrymeter</td>
<td>294</td>
</tr>
<tr>
<td>13.4</td>
<td>Use of the Fischtester</td>
<td>296</td>
</tr>
<tr>
<td>13.5</td>
<td>Summary</td>
<td>297</td>
</tr>
<tr>
<td>13.6</td>
<td>References</td>
<td>297</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14</th>
<th>Two-dimensional gel electrophoresis</th>
<th>301</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>14.2</td>
<td>Two-dimensional gel electrophoresis (2DE)</td>
<td>302</td>
</tr>
<tr>
<td>14.3</td>
<td>2DE applications in seafood science</td>
<td>305</td>
</tr>
<tr>
<td>14.4</td>
<td>2DE-based seafood science in the future</td>
<td>310</td>
</tr>
<tr>
<td>14.5</td>
<td>References</td>
<td>312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 15</th>
<th>Microbiological methods</th>
<th>318</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Microorganisms in fish and fish products</td>
<td>318</td>
</tr>
<tr>
<td>15.2</td>
<td>General aspects of microbiological methods</td>
<td>320</td>
</tr>
<tr>
<td>15.3</td>
<td>Most probable number method</td>
<td>336</td>
</tr>
<tr>
<td>15.4</td>
<td>Molecular methods</td>
<td>336</td>
</tr>
<tr>
<td>15.5</td>
<td>References</td>
<td>338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 16</th>
<th>Protein-based methods</th>
<th>349</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>349</td>
</tr>
<tr>
<td>16.2</td>
<td>Fish muscle proteins</td>
<td>349</td>
</tr>
<tr>
<td>16.3</td>
<td>Electrophoretic methods for fish species identification</td>
<td>351</td>
</tr>
<tr>
<td>16.4</td>
<td>High-performance liquid chromatography</td>
<td>356</td>
</tr>
<tr>
<td>16.5</td>
<td>Immunological methods and detection of allergenic proteins</td>
<td>357</td>
</tr>
<tr>
<td>16.6</td>
<td>Determination of heating temperature</td>
<td>357</td>
</tr>
<tr>
<td>16.7</td>
<td>Differentiation of fresh and frozen/thawed fish fillets</td>
<td>359</td>
</tr>
<tr>
<td>16.8</td>
<td>References</td>
<td>359</td>
</tr>
</tbody>
</table>
Chapter 17
DNA-based methods

Hartmut Rehbein

17.1 Introduction 363
17.2 DNA in fishery products 364
17.3 Genes used for species identification 366
17.4 Methods 368
17.5 Conclusions and outlook 379
17.6 References 380

Chapter 18
Other principles: analysis of lipids, stable isotopes and trace elements

Iciar Martinez

18.1 Introduction 388
18.2 Species and breeding stock identification by lipid analysis 389
18.3 Verification of the production method 394
18.4 Identification of the geographic origin 398
18.5 Future prospects 403
18.6 References 404

Chapter 19
Sensory evaluation of seafood: general principles and guidelines

Emilia Martinsdóttir, Rian Schelvis, Grethe Hyldig and Kolbrún Sveinsdóttir

19.1 General principles for sensory analysis 411
19.2 Application of sensory evaluation to fish and other seafood 417
19.3 References 422

Chapter 20
Sensory evaluation of seafood: methods

Emilia Martinsdóttir, Rian Schelvis, Grethe Hyldig and Kolbrún Sveinsdóttir

20.1 Introduction 425
20.2 Difference tests 425
20.3 Grading schemes 427
20.4 Quality index method 430
20.5 Descriptive sensory analysis 438
20.6 Consumer tests (hedonic) 440
20.7 References 440

Chapter 21
Data handling by multivariate data analysis

Bo M. Jørgensen

21.1 Introduction 444
21.2 What is multivariate data analysis? 444
21.3 Arrangement of data for bi-linear modelling 446
21.4 The outcome of bi-linear modelling 447
Chapter 21 Validation and prediction
21.5 Validation and prediction 451
21.6 Real examples and further reading 453
21.7 References 453

Chapter 22 Traceability as a tool
22.1 Introduction 458
22.2 Traceability from older times to the present 460
22.3 Traceability research in the seafood sector and other EU-funded food traceability projects 465
22.4 Validation of traceability data 466
22.5 Traceability in a global perspective 468
22.6 References 470

Index 472