International Control of Tritium for Nuclear Nonproliferation and Disarmament

Martin B. Kalinowski
Contents

Foreword by F.N. von Hippel xi

Preface xiii

1 Dealing with the civilian/military ambivalence toward tritium 1

1.1 Introduction .. 1

1.2 Tritium and tritium technology 2

1.3 The use of tritium .. 5

1.3.1 Civilian uses of tritium 5

1.3.2 Military uses of tritium 8

1.3.3 Civilian/military ambivalence of tritium 11

1.4 Current state of tritium control 16

1.4.1 Tritium control at the facility level 16

1.4.2 Tritium control at the national level 17

1.4.3 Tritium control at the international level 22

1.5 Rationale for international tritium control 25

1.6 Reversing vertical proliferation by tritium control 28

1.6.1 Tritium control and qualitative disarmament 28

1.6.2 The relation of tritium and weight to yield of nuclear weapons .. 30

1.6.3 Consequences of yield reduction by elimination of tritium .. 33

1.6.4 Yield reduction by tritium elimination: possibilities for qualitative nuclear disarmament 35

1.7 Horizontal nonproliferation of tritium 39

1.7.1 Tritium-related activities in de facto nuclear weapons states .. 39

1.7.2 International tritium control for nonproliferation 41

1.8 Nondiscriminatory tritium control within a Fissile Material Treaty .. 46

1.8.1 The role of tritium within a verified production cutoff for fissile materials 46

1.8.2 The principle of reciprocity within a Fissile Material Treaty .. 49
2 Diversion path analysis

2.1 Introduction 71
2.2 Diversion path analysis as a method to derive control tasks 71
 2.2.1 Methodology of diversion path analysis 71
 2.2.2 Diversion strategies 72
 2.2.3 Safeguards development methodology 73
2.3 Facility types and flow paths with relevance to tritium diversion 73
2.4 Production paths 76
 2.4.1 Lithium-6 path 76
 2.4.2 Helium-3 path 91
 2.4.3 Boron path 93
 2.4.4 Tritiated water path 94
 2.4.5 Ternary fission path 97
2.5 Removal path 99
 2.5.1 Removal from tritium-handling facilities 99
 2.5.2 Recovery of abandoned tritium and multisource acquisition 100
2.6 Survey of worldwide civilian stocks and production capacities 101
 2.6.1 Nuclear reactors and special neutron sources (facility type 1) 101
 2.6.2 Fuel fabrication facilities (facility type 2) 102
 2.6.3 Separate storages for spent fuel (facility type 3) 103
 2.6.4 Reprocessing plants (facility type 4) 103
 2.6.5 Final disposal sites for nuclear waste (facility type 5) 104
 2.6.6 Detritiation facilities (facility type 6) 104
 2.6.7 Tritium storages and research facilities (facility type 7) 105
 2.6.8 Tritium industry (facility type 8) 105
 2.6.9 Summary and outlook 108
2.7 Survey of worldwide military tritium production 108
2.8 Conclusions on tritium diversion 113
 2.8.1 Assessment of diversion possibilities 113
 2.8.2 High civilian surplus meets military demand 116
2.9 Endnotes 117

References 121

3 Verification of an international tritium control agreement

3.1 Introduction 127
3.2 Conceptual framework for verification 128
 3.2.1 Control goals and criteria 128
 3.2.2 Significant quantities 130
 3.2.3 Relevant time frames 133
3.3 Verification of nonproduction 134
3.3.1 Verification of production limitations .. 134
3.3.2 Verification of inactivity of production facilities 136
3.3.3 Detection of breeding activities .. 137
3.3.4 Verification of inadvertent tritium production 138
3.4 Verification of nonremoval .. 139
3.4.1 Methodological background of tritium accountancy 139
3.4.2 Uncertainty in baseline determination ... 143
3.4.3 Measurement accuracy in inventory-taking 144
3.4.4 Tritium sink analysis ... 152
3.4.5 Conclusions on the efficiency of tritium accountancy 156
3.5 Containment, surveillance, and physical protection 158
3.5.1 Containment and surveillance ... 158
3.5.2 Physical protection ... 158
3.6 Detection of clandestine facilities and activities 159
3.7 Control activities at different facility types 162
3.7.1 Overview of relevant facilities worldwide 162
3.7.2 Control activities ... 163
3.8 Conclusions on verification .. 173
3.9 Endnotes .. 176
References ... 183

4 Technical assessment of an international tritium control agreement 189
4.1 Adequacy and appropriateness ... 189
4.2 Nondiscrimination .. 190
4.3 Feasibility and completeness .. 190
4.4 Control effectiveness ... 192
4.5 Minimum interferences with facility operation 194
4.6 Minimum intrusiveness ... 194
4.7 Synergies with other control procedures ... 194
4.8 Costs ... 196
4.9 Effects on civilian tritium uses ... 197
4.10 Acceptability .. 197
4.11 Conclusions ... 197
4.12 Endnotes .. 199

Acknowledgments .. 201

Appendix A. World tritium facilities, inventories, and production capabilities 203
A.1 Nuclear reactors and special neutron sources (facility type 1) 204
 A.1.1 Nuclear power reactors (facility type 1a,b) 204
 A.1.2 Nuclear research reactors (facility type 1c,d) 208
 A.1.3 Special neutron sources (facility type 1f) 213
A.2 Fuel fabrication facilities (facility type 2) 215
A.3 Separate spent fuel storage facilities (facility type 3) 219
A.4 Reprocessing plants (facility type 4) .. 220
Appendix B. Abbreviations

Subject index