Chemical Weapon Destruction in Russia: Political, Legal and Technical Aspects

Edited by
John Hart and Cynthia D. Miller

sipri
Stockholm International Peace Research Institute

OXFORD UNIVERSITY PRESS
1998
Contents

Preface ix
Contributors xi
Acronyms and abbreviations xiii

1. The problems of Russian chemical weapon destruction 1
Natalya Kalinina
 I. Introduction 1
 II. Analysis of Russia’s preparations for CW destruction 1
 III. Problems associated with Russia’s ratification of the CWC 8
 IV. Conclusions 13

2. Russia on the path towards chemical demilitarization 14
Alexander Chimiskyan
 I. Introduction 14
 II. Plans for chemical weapon destruction 15
 III. Alternative CW destruction technologies and prospects of their implementation 21
 IV. Problems, the regions and ratification of the convention 26
 V. Conclusions 29

Table 2.1. Distribution of the Russian chemical weapon stockpile by storage site 16
Table 2.2. Proposed deadlines and amounts for destruction of chemical weapon stockpiles in the Russian Federation 20
Table 2.3. Distribution of Russian chemical agents by amount and type of storage 22
Table 2.4. Expenditure items and financing for the destruction of chemical weapons 23
Table 2.5. Russian and US safety standards for levels of CW agents in air 29

3. Russia’s legal basis for chemical demilitarization 30
Igor Khripunov
 I. Introduction 30
 II. The scope of chemical demilitarization 31
 III. Chemical demilitarization legislation: its structure and evolution 32
 IV. Parliamentary approval of chemical demilitarization legislation 33
 V. Presidential decrees 37
 VI. The role of the executive branch 39
 VII. Other legislation related to chemical demilitarization 40
 VIII. Conclusions 46

4. Chemical weapon destruction requirements of the CWC 47
John Hart
 I. Introduction 47
 II. Obligations for parties after entry into force 48
 III. Order of destruction 49
 IV. Discussion 52

Table 4.1. Destruction of category 1 chemical weapons 50
Table 4.2. Destruction of category 2 and 3 chemical weapons 51
5. Destruction or conversion of Russian chemical weapon production facilities

John A. Gilbert, Harvey W. Hubbard, Robert F. Pruszkowski and Mark Felipe

I. Introduction
II. CWC requirements affecting production facility destruction or conversion
III. Key factors affecting the Russian CW production facility destruction programme
IV. Potential solutions
V. Verification of production facility destruction and conversion
VI. International assistance
VII. Preparing an effective destruction programme
VIII. Conclusions

Table 5.1. Average percentage of production capacity required to be destroyed per year after entry into force of the Chemical Weapons Convention
Table 5.2. Average percentage of production capacity required to be destroyed per year after accession by a party to the Chemical Weapons Convention
Table 5.3. Comparison of inspection requirements for CW production facilities awaiting destruction and for converted facilities
Table 5.4. A proposed inspection scheme to provide high-confidence verification of compliance at converted CW production facilities
Table 5.5. Potential categories and sources of international assistance for destruction or conversion
Figure 5.1. Representative order of destruction for an original party to the Chemical Weapons Convention
Figure 5.2. Representative order of destruction for a party to the Chemical Weapons Convention that begins destruction of chemical weapon production facilities two years after entry into force of the convention
Figure 5.3. Time-lines for approval of individual chemical weapon production facility destruction and conversion plans
Figure 5.4. A process for developing an effective chemical weapon production facility destruction or conversion programme

6. Chemical weapon destruction technologies for the Russian CW stockpile

Thomas Stock

I. Introduction
II. CWC requirements for chemical weapon destruction
III. Options for CW disposal
IV. Designing a disposal operation
V. Options for the destruction of Russian CW agents
VI. Conclusions
Table 6.1. Distribution of Russian CW agents by type of storage
Table 6.2. Overview of CW destruction campaigns, 1967–94
Table 6.3. Summary of US Army chemical agent and munition destruction, 1972–98
Figure 6.1. Chemical formulas of Russian CW agents that can be incinerated
Figure 6.2. Chemical formulas for lewisite destruction
Figure 6.3. Chemical formulas for mustard agent destruction
7. Risks posed by the chemical weapon stockpile in the Udmurt Republic

Vladimir Kolodkin

I. Introduction
II. Risk assessment
III. Accident scenarios
IV. Conclusions

Table 7.1. Predicted frequency of accidents at chemical weapon storage facilities
Table 7.2. Models to assess risk of accident
Table 7.3. Radii of area of lethal effect at an $R = 10^{-6}$ magnitude of risk at the Kambarka CW arsenal
Table 7.4. Radii of the area affected by a 320 m3 lewisite spill at various magnitudes of risk at the Kambarka CW arsenal
Table 7.5. Radii of area of lethal effect at $R = 10^{-2}$ and $R = 10^{-6}$ magnitudes of risk when sarin and soman are released from artillery shells of various calibres at the Kizner CW arsenal
Table 7.6. Quantity of storage tanks destroyed in an explosion at the Kambarka CW arsenal
Table 7.7. Area of lethal effect in an explosion at the Kambarka CW arsenal at various magnitudes of risk
Table 7.8. Characteristics of contaminated areas in an explosion at the Kizner CW arsenal
Table 7.9. Area of lethal effect in an explosion at the Kizner CW arsenal at various magnitudes of risk
Table 7.10. Area of lethal effect in a fire at the Kambarka CW arsenal at various magnitudes of risk
Table 7.11. Area where human activity would be affected in a fire at the Kambarka CW arsenal at $R = 10^{-4}$ magnitude of risk

Figure 7.1. General scheme for predicting the consequences of an accident

8. The Russian–US joint evaluation of the Russian two-stage process for the destruction of nerve agents

Irina P. Beletskaya

I. Introduction
II. Two-phase evaluation of the Russian process
III. Criteria for the Russian process and the evaluation programme
IV. Plans for further optimization of the CW destruction process
V. The Russian two-stage CW destruction process
VI. Analysis methods
VII. Independent peer review of the results
VIII. Conclusions

Table 8.1. Criteria for judging the success of phases 1 and 2 of the Russian–US joint evaluation programme
Table 8.2. Evaluation of the Russian two-stage CW destruction technology
Figure 8.1. Neutralization of G-agents
Figure 8.2. Bituminization of G-agents
Figure 8.3. US and Russian VX
Figure 8.4. Methylphosphonate esters formed during the reaction of RD-4 with US and Russian VX, respectively
9. The role of GosNIIOKhT in the Russian chemical weapon destruction programme
Vladislav Sheluchenko and Anton Utkin

I. Introduction
II. Requirements for destruction technology and design criteria
III. Two-stage technology
IV. The Russian–US joint evaluation programme
V. The Russian–US programme for optimization of two-stage technology
VI. Alternative technologies

Table 9.1. Russian and US standards for maximum allowable concentration of various CW agents (mg/m^3) in air

10. US assistance to Russia’s chemical weapon destruction programme
Amy E. Smithson

I. Introduction
II. Assistance in increments
III. Expectations and political realities
IV. Conclusions

11. Chemical weapon destruction in Russia: prospects for increasing assistance to local communities
Cynthia D. Miller

I. Introduction
II. Russian chemical demilitarization efforts
III. Significant events
IV. Concerns prior to ratification
V. Defining need
VI. Possible sources of foreign assistance
VII. Coordinating federal assistance programmes
VIII. Conclusions

Table 11.1. Chemical weapon destruction at Gorny, Saratov oblast
Table 11.2. Chemical weapon destruction at Kambarka, Udmurtia
Table 11.3. Tacis funds committed to Russia for the national CW destruction programme, 1991–94

Annexe A. CWC definitions and terms
John Hart

SIPRI publications on CBW