Methods in Cell Biology

VOLUME 84

Biophysical Tools for Biologists,
Volume One: In Vitro Techniques

Dr. John J. Correia

Dr. H. William Detrich, III

ELSEVIER
SECTION 1 Solution Methods

1. Binding: A Polemic and Rough Guide
 Nichola C. Garbett and Jonathan B. Chaires
 I. Introduction 4
 II. Binding Constants Provide an Entry into Thermodynamics 5
 III. General Properties of Binding Isotherms 7
 IV. Thermodynamics from Thermal Denaturation Methods 10
 V. Completing the Thermodynamic Profile 13
 VI. Thermodynamics in the Real World: Some Useful Strategies 14
 VII. Ligand-Receptor Binding in the Absence of an Optical Signal 16
 VIII. Toward High-Throughput Thermodynamics 18
 IX. Summary 20
 References 21

2. Linked Equilibria in Regulation of Transcription Initiation
 Dorothy Beckett
 I. Introduction 26
 II. Multiple Levels of Linkage in Transcription Regulation 27
 III. A Road Map for Quantitative Studies of Assembly of Gene Regulatory Complexes 30
 IV. Measurements of Binding Interactions in Transcription Regulation 30
 V. Case Studies of Multiple Linked Equilibria in Transcription Regulatory Systems 44
 References 50
3. Biosensor-Surface Plasmon Resonance Methods for Quantitative Analysis of Biomolecular Interactions

Faisal A. Tanious, Binh Niuyen, and W. David Wilson

I. Introduction 54
II. Rationale: Biomolecular Interactions with SPR Detection 55
III. Materials and Methods 58
IV. Results and Data Analysis 68
V. Summary 74
References 75

4. Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions

Matthew W. Freyer and Edwin A. Lewis

I. Introduction 80
II. Calorimetry Theory and Operation 82
III. Thermodynamic ITC Experiments 85
IV. Kinetic ITC Experiments 100
V. Conclusions 110
References 111

5. Differential Scanning Calorimetry

Charles H. Spink

I. Introduction 116
II. DSC Instrumentation 117
III. Experimental Protocols and Preliminary Data Treatment 119
IV. Modeling DNA Unfolding 126
V. Summary 139
References 140

6. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium

James L. Cole, Jeffrey W Lary, Thomas P. Moody, and Thomas M. Laue

I. Introduction 144
II. Basic Theory 146
III. Dilute Solution Measurements 147
IV. Concentrated and Complex Solutions 149
V. Instrumentation and Optical Systems 150
VI. Sample Requirements 158
VII. Sample Preparation 160
VIII. Sedimentation Velocity 161
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX</td>
<td>Sedimentation Equilibrium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Discussion and Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Determination of Membrane Protein Molecular Weights and Association</td>
<td>Nancy K. Burgess, Ann Marie Stanley, and Karen G. Fleming</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Equilibrium Constants Using Sedimentation Equilibrium and Sedimentation Velocity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
<td></td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>II. Rationale</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>III. Materials and Methods</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>IV. Results</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>V. Discussion</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>VI. Summary</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>8</td>
<td>Basic Aspects of Absorption and Fluorescence Spectroscopy and</td>
<td>Natasha Spanker and Susan L. Baue</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Resonance Energy Transfer Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>II. Absorption Spectroscopy</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>III. Fluorescence Spectroscopy</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>IV. Summary</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>9</td>
<td>Applications of Fluorescence Anisotropy to the Study of Protein-DNA</td>
<td>Vince J. LiCata and Andypor</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Introduction and General Background</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>II. Advantages and Disadvantages of Anisotropy in Monitoring DNA</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Binding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Equipment</td>
<td></td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>IV. Experimental Design and Performance</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>V. Other Applications of Fluorescence Anisotropy to the Study of</td>
<td></td>
<td>2611</td>
</tr>
<tr>
<td></td>
<td>Protein-DNA Interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>2611</td>
</tr>
<tr>
<td>10</td>
<td>Circular Dichroism and Its Application to the Study of Biomolecules</td>
<td>Stephen R. Martin and Mariapchistra</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
<td></td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>II. Instrumentation and Sample preparation</td>
<td></td>
<td>266</td>
</tr>
</tbody>
</table>
11. Protein Folding and Stability Using Denaturants

Timothy O. Street, Naomi Courtemanche, and Doty Barrick

I. Introduction 296
II. Rationale 297
III. Methods 298
IV. Materials 310
V. Discussion 313
VI. Summary 322
References 323

12. Hydrodynamic Modeling: The Solution Conformation of Macromolecules and Their Complexes

Olwyn Byron

I. Introduction 328
II. Background to HBM 329
III. Model Construction 332
IV. Model Visualization 348
V. Hydration 349
VI. Hydrodynamic Calculations 353
VII. Advanced Hydrodynamic Calculations 366
VIII. Concluding Comments 370
References 370

13. X-Ray and Neutron Scattering Data and Their Constrained Molecular Modeling

Stephen J. Perkins, Azubuike I. Okemef Ina, Anira N. Fernando, Alexandra Bonner, Hannah E. Gilbert, and Patricia B. Furtado

I. Introduction 376
II. Rationale 380
III. X-Ray and Neutron Facilities 382
IV. Experimental Methods 390
V. Constrained Scattering Modeling 400
VI. Examples 407
VII. Discussion 416
References 420
14. Structural Investigations into Microtubule-MAP Complexes

Andreas Hoenger and Heinz Gross

I. Introduction 426
II. Rationale 428
III. Methods 430
IV. Discussion 439
References 441

15. Rapid Kinetic Techniques

John F. Eccleston, Stephen R. A9artin, and Maria J. Schilstra

I. Introduction 446
II. Basic Theory 448
III. Techniques 452
IV. Instrumentation 456
V. Probes 459
VI. Experimental Design and Data Analysis 463
VII. Complex Reactions 471
VIII. Data Analysis in Practice 474
References 476

16. Mutagenic Analysis of Membrane Protein Functional Mechanisms: Bacteriorhodopsin as a Model Example

George J. Turner

I. Introduction 480
II. Rationale 481
III. Materials and Methods 486
IV. Results 491
V. Conclusions 509
References 511

17. Quantifying DNA-Protein Interactions by Single Molecule Stretching

Mark C. Williams, Ionlia Rouzzina, and Richard L. Karpel

I. Introduction 518
II. Stretching Single DNA Molecules with Optical Tweezers 519
III. Force-Induced Melting of Single DNA Molecules 521
IV. T4 gp32 interactions with DNA 522
V. Model for Salt-Dependent Regulation of T4 Gene 32 Binding to DNA 531
VI. Conclusions 537
References 538
26. Computational Methods for Biomolecular Electrostatics

Felts! Doug, Brett Olsen, and Nathan A. Baker

I. Introduction 844
II. Electrostatics in Cellular Systems 844
III. Models for Biomolecular Solvation and Electrostatics 847
IV. Applications 856
V. Conclusion and Future Directions 861
References 862

27. Ligand Effects on the Protein Ensemble: Unifying the Descriptions of Ligand Binding, Local Conformational Fluctuations, and Protein Stability

Steven T. Whitten, Bertrand E. Garcia-Moreno, and Vincent J. Hilser

I. Introduction 872
II. The Effect of pH on the Conformational Ensemble 875
III. Results and Discussion 881
IV. Summary and Conclusions 886
References 889

28. Molecular Modeling of the Cytoskeleton

Xiange Zheng and David Sept

I. Introduction 894
II. Simulation Methods 894
III. Applications of Molecular Modeling 898
IV. Related Methodologies 904
V. Conclusions 907
References 907

29. Mathematical Modeling of Cell Migration

Anders E. Carlsson and David Sept

I. Introduction 912
II. Cell Protrusion 912