METHODS IN
ENZYMEOLOGY

Lipidomics and
Bioactive Lipids: Lipids
and Cell Signaling

EDITED BY

H. ALEX BROWN
Departments of Pharmacology and Chemistry
Vanderbilt University Medical Center
Nashville, Tennessee
Contents

Contributors xi
Preface xvii
Volumes in Series xix

1. Phospholipase A₂ Assays Using a Radiolabeled Substrate and Mass Spectrometry
Rei Morikawa, Masafumi Tsujimoto, Hiroyuki Arai, and Junken Aoki

1. Introduction 2
2. Types of PLA₂ 2
3. Conventional PLA₂ Assay Using Radiolabeled Substrates 3
4. Novel PLA₂ Assay Using ESI-MS 6
5. Perspective 11
Acknowledgments 11
References 11

2. Real-Time Cell Assays of Phospholipase A₂s Using Fluorogenic Phospholipids
Debasis Manna and Wonhwa Cho

1. Introduction 16
2. Fluorogenic PLA₂ Substrates 18
3. Measuring Cellular sPLA₂ Activity Using PED6 and Red-PED6 23
4. Measuring Cellular cPLA₂ Activity Using DAPC 24
References 26

3. Analysis and Pharmacological Targeting of Phospholipase C β Interactions with G Proteins
David M. Lehmann, Chujun Yuan, and Alan V. Smrcka

1. Introduction 30
2. Methods 31
3. Concluding Remarks 46
Acknowledgment 47
References 47
4. Biochemical Analysis of Phospholipase D 49
H. Alex Brown, Lee G. Henage, Anita M. Preininger,
Yun Xiang, and John H. Exton

1. Introduction 50
2. Assay of Recombinant PLD In Vitro 52
3. Regulated PLD1 Activity 59
4. Preparation of Activators of PLD1 60
5. Effects of Activators on PLD1 Activity 61
6. Synergy Between PLD1 Activators 62
7. Binding of PLD1 to Phospholipid Vesicles 63
8. Kinetic Parameters of PLD1 Catalytic Activity 65
9. Kinetic Analyses of Synergistic Responses 69
10. Phosphatidylinositol 4,5-Bisphosphate is an Essential
 PLD1 Activator 69
11. In Vivo PLD Assay Using Radioisotopes 74
12. In Vivo PLD Assay Using Deuterated 1-Butanol 74
13. Fluorescent In Vitro PLD Assay 77
14. Real-Time Diacylglycerol Lipase Assay 80
 Acknowledgments 85
 References 85

5. Measurement of Autotaxin/Lysophospholipase D Activity 89
Andrew J. Morris and Susan S. Smyth

1. Introduction 90
2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity 93
3. Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells 94
4. Measurement of Autotaxin/LysoPLD Activity Using
 Radiolabeled Substrates 95
5. Measurement of Autotaxin/LysoPLD Activity Using
 Fluorogenic Substrates 98
6. Concluding Comments 100
 Acknowledgment 102
 References 102

6. Platelet-Activating Factor 105
John S. Owen, Michael J. Thomas, and Robert L. Wykle

1. Introduction 105
2. Procedure 107
 Acknowledgments 115
 References 115
7. **Quantitative Measurement of Phosphatidylinositol 3,4,5-trisphosphate**
 Hervé Guillou, Len R. Stephens, and Phillip T. Hawkins
 1. Introduction
 2. Measuring Levels of Radioactively Labeled Phosphoinositides in Isolated Cells
 3. Measuring PtdIns(3,4,5)P₃ by Protein–Lipid Overlay
 4. Conclusions
 Acknowledgments
 References

8. **Measuring Phosphorylated Akt and Other Phosphoinositide 3-kinase-Regulated Phosphoproteins in Primary Lymphocytes**
 Amber C. Donahue, Michael G. Kharas, and David A. Fruman
 1. Overview
 2. Choosing a Downstream Readout: General Considerations
 3. Protocols for Detection of PI3K-Regulated Phosphoproteins by Immunoblot
 4. Protocols for Detection of Phosphoproteins by Flow Cytometry
 5. Discussion
 Acknowledgments
 References

9. **Regulation of Phosphatidylinositol 4-Phosphate 5-kinase Activity by Partner Proteins**
 Yasunori Kanaho, Kazuhisa Nakayama, Michael A. Frohman, and Takeaki Yokozeki
 1. Introduction
 2. Protocols
 Acknowledgments
 References

10. **Biochemical Analysis of Inositol Phosphate Kinases**
 James C. Otto, Sashidhar Mulugu, Peter C. Fridy, Shean-Tai Chiou, Blaine N. Armbruster, Anthony A. Ribeiro, and John D. York
 1. Introduction
 2. Experimental Methods
 3. Conclusions
 Acknowledgments
 References
11. Analysis of Phosphoinositides and Their Aqueous Metabolites 187
Christopher P. Berrie, Cristiano Iurisci, Enza Piccolo, Renzo Bagnati, and Daniela Corda

1. Introduction 188
2. Cell Sample Extraction 191
3. Lipid Phase: TLC, HPLC Separation, and Desalting 197
4. Aqueous Phase: HPLC Separation, Desalting, and Ascentillant Extraction 203
5. Chemical Identification 212
6. ESI-MS/MS Identification 214
7. Standards 219
8. Final Considerations 226
Acknowledgments 227
References 227

12. Combination of C17 Sphingoid Base Homologues and Mass Spectrometry Analysis as a New Approach to Study Sphingolipid Metabolism 233
Stefka Spassieva, Jacek Bielawski, Viviana Anelli, and Lina M. Obeid

1. Introduction 234
2. Mass Spectrometry Analysis 235
3. Ceramide Synthase 236
4. In Vitro Ceramide Synthase Method 236
5. Sphingosine Kinase 237
6. In Vitro Sphingosine Kinase Method 238
7. In Cells Labeling with C17 Sphingoid Base 239
Acknowledgments 240
References 240

13. Measurement of Mammalian Sphingosine-1-Phosphate Phosphohydrolase Activity In Vitro and In Vivo 243
Michael Maceyka, Sheldon Milstien, and Sarah Spiegel

1. Introduction 244
2. Principle 249
3. Measurement of SPP Activity in Cell Lysates 249
4. Measurement of SPP Activity in Live Cells 252
Acknowledgments 253
References 253

14. A Rapid and Sensitive Method to Measure Secretion of Sphingosine-1-Phosphate 257
Poulami Mitra, Shawn G. Payne, Sheldon Milstien, and Sarah Spiegel

1. Introduction 258
2. Measurement of S1P 259
3. Conclusions and Perspectives 262
Acknowledgments 263
References 263

15. Ceramide Kinase and Ceramide-1-Phosphate 265
Dayanjan S. Wijesinghe, Nadia F. Lamour, Antonio Gomez-Munoz, and Charles E. Chalfant

1. Introduction 266
2. Recombinant Expression and Kinetic Analysis of CERK 269
3. In Vitro Kinetic Analysis of CERK Activity Using Mixed Micellar Assays 272
4. Effective Delivery of C1P to Cells in Tissue Culture to Study Biological Effects 278
5. Analysis of Levels of Kinase-Derived C1P in Cells 281
6. Analysis of CERK Localization in Cells 284
7. Analysis of CERK Function by siRNA-Mediated Manipulation of CERK Expression 286
8. Analysis of CERK mRNA Levels by Q-PCR 288
Acknowledgments 289
References 290

16. Measurement of Mammalian Diacylglycerol Kinase Activity
In Vitro and in Cells 293
Richard M. Epand and Matthew K. Topham

1. Introduction 294
2. In Vitro Assay of DGK 295
3. Measuring DGK Activity in Subcellular Compartments 300
4. Measuring DGK Activity in Cultured Cells 301
5. Summary 303
References 303

17. Lipid Phosphate Phosphatases from Saccharomyces cerevisiae 305
George M. Carman and Wen-I Wu

1. Introduction 306
2. Preparation of Radiolabeled Substrates 307
3. Assay Methods 307
4. Growth of Yeast 308
5. Purification Procedure 308
6. Properties of DPP1- and LPP1-Encoded Lipid Phosphate Phosphatases 311
Acknowledgment 313
References 313

Author Index 317
Subject Index 335