Current Topics in Developmental Biology
Volume 81

Multiscale Modeling of Developmental Systems

Edited by

Santiago Schnell
Indiana University School of Informatics and Biocomplexity Institute

Philip K. Maini
Centre for Mathematical Biology and Oxford Centre for Integrative Systems Biology
University of Oxford

Stuart A. Newman
Department of Cell Biology and Anatomy
New York Medical College

Timothy J. Newman
Department of Physics and School of Life Sciences
Arizona State University

Published in Affiliation with the Society for Developmental Biology

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier
Contents

Contributors xiii
Introduction xvii

1

Models of Biological Pattern Formation: From Elementary Steps to the Organization of Embryonic Axes

Hans Meinhardt

I. Introduction 2
II. Primary Pattern Formation by Local Self-Enhancement and Long-Ranging Inhibition 6
III. The Two Main Body Axes 21
IV. Subpatterns 33
V. Conclusion 53
 Acknowledgments 54
 References 54

2

Robustness of Embryonic Spatial Patterning in Drosophila melanogaster

David Umulis, Michael B. O’Connor, and Hans G. Othmer

I. Introduction 65
II. Robustness in the Developmental Context 69
III. Scaling of AP Patterning in Drosophila 77
IV. Models of the Segment Polarity Network 80
V. Dorsal–Ventral Patterning in Drosophila 87
VI. Conclusions 105
 Acknowledgments 108
 Note added in proof 108
 References 108
Appendix C. Python Steppables for Somitogenesis Simulations
(somiteSteppables.py) 236
References 244

8

Branched Organs: Mechanics of Morphogenesis by Multiple Mechanisms
Sharon R. Lubkin

I. Introduction 249
II. Background 251
III. Candidate Physical Mechanisms 253
IV. Models of Branching 258
V. Discussion 263
 Acknowledgments 265
 References 265

9

Multicellular Sprouting during Vasculogenesis
Andras Czirok, Evan A. Zamir, Andras Szabo, and Charles D. Little

I. Introduction 270
II. Empirical Data, in vivo 272
III. Elongated Structures, in vitro 277
IV. Mathematical Model of Sprout Formation 281
V. Conclusions 287
 Acknowledgments 287
 References 287

10

Modeling Lung Branching Morphogenesis
Takashi Miura

I. Introduction 291
II. Modeling in vitro Lung Branching Morphogenesis 296
III. Functional Modeling—Structure and Air Flow 300
IV. Future Directions 300
V. Numerical Simulations of Branching Morphogenesis Models 301
 References 306
Multiscale Models for Vertebrate Limb Development

Stuart A. Newman, Scott Christley, Tilmann Glimm, H. G. E. Hentschel, Bogdan Kazmierczak, Yong-Tao Zhang, Jianfeng Zhu, and Mark Alber

I. Introduction 312
II. Tissue Interactions and Gene Networks of Limb Development 313
III. Models for Chondrogenic Pattern Formation 316
IV. Simulations of Chondrogenic Pattern Formation 323
V. Discussion and Future Directions 332

Acknowledgments 336
References 336

Tooth Morphogenesis in vivo, in vitro, and in silico

Isaac Salazar-Ciudad

I. Introduction 342
II. The Use of Mammalian Tooth for Developmental and Evolutionary Biology 343
III. Morphological Changes During Tooth Development 344
IV. Gene Networks in Tooth Development 347
V. The Formation of the Cusps 348
VI. Spacing Between Cusps 349
VII. Morphodynamic Model 1 350
VIII. Model 1 and Tooth Dynamics 353
IX. Morphodynamic Model 2 355
X. What Do Model Dynamics Reveal About Developmental Dynamics 358
XI. Tooth Model in Comparison to Other Models of Organ Development 366
XII. Concluding Remarks 367

Acknowledgments 368
References 368
Delaunay-Object-Dynamics: Cell Mechanics with a 3D Kinetic and Dynamic Weighted Delaunay-Triangulation

Michael Meyer-Hermann

I. Overview of Methods in Theoretical Biology 374
II. Delaunay-Based Interaction 378
III. Voronoi-Cells Approximate Real Cells 380
IV. Delaunay-Dynamics 382
V. Equation of Motion for Vertices 384
VI. Mechanics Matters 392
VII. Conclusion 396

Cellular Automata as Microscopic Models of Cell Migration in Heterogeneous Environments

Haralambos Hatzikirou and Andreas Deutsch

I. Introduction 402
II. Idea of the LGCA Modeling Approach 406
III. LGCA Models of Cell Motion in a Static Environment 408
IV. Analysis of the LGCA Models 414
V. Results and Discussion 420

Multiscale Modeling of Biological Pattern Formation

Ramon Grima

I. Introduction 436
II. Quantitative Modeling 437
III. Building Cellular and Tissue-Level Models for a Simple Biological System 439
IV. Mean-Field Theory and the Interrelationship of Models at Different Spatial Scales 444
Relating Biophysical Properties Across Scales
Elijah Fenner, Francoise Marga, Adrian Neagu, Ioan Kosztin, and Gabor Forgacs

I. Introduction 462
II. Theory and Computer Modeling 463
III. Results 470
IV. Conclusions 480
 Acknowledgments 482
 References 482

Complex Multicellular Systems and Immune Competition: New Paradigms Looking for a Mathematical Theory
Nicola Bellomo and Guido Forni

I. Introduction 485
II. Conceptual Lines Towards a Mathematical Biological Theory 486
III. From Hartwell’s Theory of Modules to Mathematical Structures 488
IV. A Simple Application and Perspectives 491
V. What Is Still Missing for a Biological Mathematical Theory 496
 References 500

Index 503
Contents of Previous Volumes 515