METHODS IN ENZYMEOLOGY

Translation Initiation: Cell Biology, High-Throughput Methods, and Chemical-Based Approaches

EDITED BY

JON LORSCH

Department of Biophysics and Biophysical Chemistry
Johns Hopkins University School of Medicine
Baltimore, Maryland
CONTENTS

Contributors xi
Preface xvii
Volumes in Series xix

1. Purification of FLAG-Tagged Eukaryotic Initiation Factor 2B Complexes, Subcomplexes, and Fragments from Saccharomyces cerevisiae 1
 Sarah S. Mohammad-Qureshi, Raphaël Haddad, Karren S. Palmer, Jonathan P. Richardson, Edith Gomez, and Graham D. Pavitt
 1. Introduction 2
 2. Plasmid Vectors and Yeast Strains Used 4
 3. Expression and Purification of eIF2B 6
 4. Functional Analysis of Purified Proteins 10
 5. Conclusions 10
 Acknowledgments 10
 References 11

2. In Vivo Deletion Analysis of the Architecture of a Multiprotein Complex of Translation Initiation Factors 15
 Klaus H. Nielsen and Leos Valášek
 1. Introduction 16
 2. Ni²⁺ Affinity Purification of eIF3 Using a Polyhistidine Tag 21
 3. Deletion/Mutational Analysis of eIF3 Subunits and Ni²⁺ Affinity Purification of Their Subcomplexes 24
 4. eIF3 Purification Using Other Epitope Tags 27
 5. CAM (Clustered-io-Alanine Mutagenesis) 29
 Acknowledgments 30
 References 31

3. An Approach to Studying the Localization and Dynamics of Eukaryotic Translation Factors in Live Yeast Cells 33
 Susan G. Campbell and Mark P. Ashe
 1. Introduction 34
 2. Yeast Strains and Growth Conditions 37
 3. Application of Live Cell Imaging 39
 4. Additional In Vivo Techniques 43
7. Methods for Studying Signal-Dependent Regulation of Translation Factor Activity

Xuemin Wang and Christopher G. Proud

1. Introduction to Signaling Pathways and the Control of Translation Factors
2. Experimental Protocols
3. Analysis of the Phosphorylation States of Translation Factors and Signaling Components—Overview
4. Assays for Specific Protein Kinases
5. Assays for Initiation Factor Function
6. References

8. Analysis of mRNA Translation in Cultured Hippocampal Neurons

Yi-Shuian Huang and Joel D. Richter

1. Materials and Reagents for Primary Neuron Culture
2. RNA Transfection and Reporter Assays
3. shRNA Design and Lenti-shRNA Virus Production
4. shRNA Knockdown of CPEB3 in Cultured Neurons
5. Synaptoneurosome Isolation and 35S-met/cys Labeling
6. UV-Crosslinking, Immunoprecipitation of an RNA-Binding Protein, CPEB3
7. References

9. Detecting Ribosomal Association with the 5' Leader of mRNAs by Ribosome Density Mapping (RDM)

Naama Eldad and Yoav Arava

1. Introduction
2. General Concept
3. Methods
4. Acknowledgments
5. References

10. Genome-Wide Analysis of mRNA Polysomal Profiles with Spotted DNA Microarrays

Daniel Melamed and Yoav Arava

1. Introduction
2. Experimental Designs
3. Methods
4. Data Acquisition and Analysis
5. Acknowledgments
6. References
11. Synthesis of Anti-Reverse Cap Analogs (ARCAs) and their Applications in mRNA Translation and Stability

Ewa Grudzien-Nogalska, Janusz Stepinski, Jacek Jemielity, Joanna Zuberek, Ryszard Stolarski, Robert E. Rhoads, and Edward Darzynkiewicz

1. Introduction
2. Chemical Synthesis
3. In Vitro and In Vivo Assays
4. Binding Affinity of ARCAs for eIF4E
5. Incorporation of ARCAs into RNA by In Vitro Transcription
6. Properties of ARCAs and ARCA-Capped mRNAs in Cell-Free Translation Systems
7. Properties of ARCA-Capped mRNAs in Mammalian Cells
Acknowledgments
References

12. Methods for Identifying Compounds that Specifically Target Translation

Letizia Brandi, Attilio Fabbretti, Pohl Milon, Marcello Carotti, Cynthia L. Pon, and Claudio O. Gualerzi

1. Introduction
2. Materials Required
3. Methods and Tests
Acknowledgments
References

13. Identifying Small Molecule Inhibitors of Eukaryotic Translation Initiation

Regina Cencic, Francis Robert, and Jerry Pelletier

1. Introduction
3. A Forward Chemical Genetic Screen to Identify Inhibitors of Eukaryotic Translation
4. Characterization of Inhibitors of Translation Identified in Chemical Genetic Screens
5. Discussion and Concluding Remarks
Acknowledgments
References
14. Isolation and Identification of Eukaryotic Initiation Factor 4A as a Molecular Target for the Marine Natural Product Pateamine A 303

Woon-Kai Low, Yongjun Dang, Tilman Schneider-Poetsch, Zonggao Shi, Nam Song Choi, Robert M. Rzasa, Helene A. Shea, Shukun Li, Kaapjoo Park, Gil Ma, Daniel Romo, and Jun O. Liu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>304</td>
</tr>
<tr>
<td>2. Total Synthesis of Pateamine A</td>
<td>307</td>
</tr>
<tr>
<td>Relationship Studies</td>
<td></td>
</tr>
<tr>
<td>4. Structural Analysis of PatA Leading to DMDA-PatA and Viable Positions for Derivatization</td>
<td>313</td>
</tr>
<tr>
<td>5. Synthesis of a Bioactive Biotin-Pateamine A (B-PatA) Conjugate</td>
<td>313</td>
</tr>
<tr>
<td>6. Affinity Pull-Down of PatA-Binding Proteins</td>
<td>315</td>
</tr>
<tr>
<td>7. Identification of PatA-Binding Proteins</td>
<td>319</td>
</tr>
<tr>
<td>8. Concluding Remarks</td>
<td>321</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>322</td>
</tr>
</tbody>
</table>

Author Index 325
Subject Index 343