CONTENTS

Contributors xiii
Preface xix

PART I Basic Concept and Preparation Culture Substrates for Cell Mechanical Studies

1. Basic Rheology for Biologists
 Paul A. Janney, Penelope C. Georges, and Søren Hvidt
 - I. Introduction and Rationale 4
 - II. Rheological Concepts 6
 - III. Rheological Instrumentation 11
 - IV. Experimental Design 13
 - V. Sample Preparation 20
 - VI. Special Considerations for Biological Samples 22
 - VII. Conclusions 24
 - References 26

2. Polyacrylamide Hydrogels for Cell Mechanics: Steps Toward Optimization and Alternative Uses
 Casey E. Kandour, Penelope C. Georges, Paul A. Janney, and Karen A. Beningo
 - I. Introduction 30
 - II. Principle of the Polyacrylamide Hydrogel 31
 - III. Conjugation of Proteins to Polyacrylamide 33
 - IV. Optimizing the Placement of Beads for Traction Force Microscopy 40
 - V. Manipulation of Gel Geometry 41
 - VI. Concluding Remarks 44
 - References 45

3. Microscopic Methods for Measuring the Elasticity of Gel Substrates for Cell Culture: Microspheres, Microindenters, and Atomic Force Microscopy
 Margo T. Frey, Adam Engler, Dennis E. Discher, Juliet Lee, and Yu-Li Wang
 - I. Introduction 48
 - II. Probing with Microspheres Under Gravitational Forces 49
III. Atomic Force Microscopy
IV. Probing with Spherically Tipped Glass Microindenters
V. Conclusions
 References

4. Surface Patterning
 Irene Y. Tsai, Alfred J. Crosby, and Thomas P. Russell
 I. Introduction
 II. Patterning with Electrodynamic Instabilities
 III. Lithography Without a Clean Room
 IV. Patterning at the Micro- and Nanoscale with Polymer Mixtures and Block Copolymers
 V. Summary
 References

5. Molecular Engineering of Cellular Environments: Cell Adhesion to Nano-Digital Surfaces
 Joachim P. Spatz and Benjamin Geiger
 I. Introduction: Sensing Cellular Environments
 II. Nano-Digital Chemical Surfaces for Regulating Transmembrane-Receptor Clustering
 III. Outlook for the Future
 References

PART II Subcellular Mechanical Properties and Activities

6. Probing Cellular Mechanical Responses to Stimuli Using Ballistic Intracellular Nanorheology
 Pornthula Panorchan, Jerry S. H. Lee, Brian R. Daniels, Thomas P. Kole, Yiuder Tseng, and Denis Wirtz
 I. Introduction
 II. Materials and Instrumentation
 III. Procedures
 IV. Pearls and Pitfalls
 V. Concluding Remarks
 References
7. Multiple-Particle Tracking and Two-Point Microrheology in Cells
 John C. Crocker and Brenton D. Hoffman
 I. Introduction 142
 II. Principles of Passive Tracer Microrheology 146
 III. Multiple-Particle Tracking Algorithms 149
 IV. Computing Rheology from Tracer Trajectories 155
 V. Error Sources in Multiple-Particle Tracking 161
 VI. Instrument Requirements for High-Performance Tracking 168
 VII. Example: Cultured Epithelial Cells 172
 VIII. Conclusions and Future Directions 177
 References 177

8. Imaging Stress Propagation in the Cytoplasm of a Living Cell
 Ning Wang, Shaohua Hu, and James P. Butler
 I. Introduction 180
 II. Detecting External Stress-Induced Displacements in the Cytoplasm 181
 III. Imaging Displacement and Stress Maps in a Live Cell 188
 IV. Future Prospects 197
 References 198

9. Probing Intracellular Force Distributions by High-Resolution Live Cell Imaging and Inverse Dynamics
 Lin Ji, Dinah Loerke, Margaret Gardel, and Gaudenz Danuser
 I. Introduction 200
 II. Methods 202
 III. Summary 227
 IV. Appendix 228
 References 231

10. Analysis of Microtubule Curvature
 Andrew D. Biek, Erkan Tüzel, Daniel M. Kroll, and David J. Odde
 I. Introduction 238
 II. Rationale 240
 III. Raw Data Collection 242
 IV. Validation Strategy 245
 V. Curvature Estimation Methods 256
 VI. Results 258
 VII. Discussion 264
 VIII. Conclusions 265
 References 266
11. Nuclear Mechanics and Methods

Jan Lammerding, Kris Noel Dahl, Dennis E. Discher, and Roger D. Kamm

I. Introduction
II. Experimental Methods for Probing Nuclear Mechanical Properties
III. Discussion and Prospects
IV. Outlook

References

PART III Cellular and Embryonic Mechanical Properties and Activities

12. The Use of Gelatin Substrates for Traction Force Microscopy in Rapidly Moving Cells

Juliet Lee

I. Introduction
II. Rationale
III. Methods
IV. Applications of the Gelatin Traction Force Assay to Study Mechano-signal Transduction in Moving Keratocytes
V. Other Applications and Future Directions
VI. Summary

References

13. Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells

Nathan J. Sniadecki and Christopher S. Chen

I. Introduction
II. Microfabrication of the Micropost Arrays
III. Characterization of Micropost Spring Constant
IV. Analysis of Traction Forces Through Micropost Deflections
V. Experimental Applications of Microposts and Discussion

References

Kristin E. Michael and Andrés J. García

I. Introduction
II. The Cell Adhesion Process
III. Measurement Systems for Adhesion Characterization

References
PART IV Mechanical Stimuli to Cells

19. Tools to Study Cell Mechanics and Mechanotransduction

Taunay P. Lele, Julia E. Serf, Benjamin D. Matthews, Sanjay Kumar, Shannon Xia, Martin Montoya-Zavala, Thomas Polte, Darryl Overby, Ning Wang, and Donald E. Ingber

I. Introduction 444
II. Control of Cell Shape, Cytoskeletal Organization, and Cell Fate Switching 446
III. Probing Cell Mechanics, Cytoskeletal Structure, and Mechanotransduction 454
IV. Discussion and Future Implications 467
 References 469

20. Magnetic Tweezers in Cell Biology

Monica Tanase, Nicolas Biais, and Michael Sheetz

I. Introduction 474
II. Physics of Magnetic Tweezers 475
III. Magnetic Field Considerations 477
IV. Magnetic Particle Selection 479
V. Basic Solenoid Apparatus 481
VI. Force Calibration 482
VII. Experimental Procedures 487
 References 491

21. Optical Neuronal Guidance

Allen Ehrlicher, Timo Betz, Björn Stuhmann, Michael Gögler, Daniel Koch, Kristian Franze, Yunbi Lu, and Josef Käs

I. Introduction 496
II. Apparatus 501
III. Experiments 509
IV. Plausible Mechanisms of Optical Guidance 513
22. Microtissue Elasticity: Measurements by Atomic Force Microscopy and Its Influence on Cell Differentiation

Adam J. Engler, Florian Rehfeldt, Shamik Sen, and Dennis E. Discher

I. Introduction

II. AFM in Microelasticity Measurements

III. Materials Characterization

IV. Assessing Mechanical Influences on Cells

References

522
526
531
541
542

23. Demystifying the Effects of a Three-Dimensional Microenvironment in Tissue Morphogenesis

Kandice R. Johnson, Jennifer L. Leight, and Valerie M. Weaver

I. Introduction

II. Rationale

III. Methods

IV. Materials

V. Discussion

References

548
550
558
573
577
580

Index

References

585
580
580
580
580

Volumes in Series

601