Cover Photo Credit: Compliments of Justin St. John and Emma Bowles, The University of Birmingham and Keith Campbell and Ramiro Alberio, The University of Nottingham. Cover is a 10-cell embryo generated using a goat donor cell and a sheep enucleated oocyte. It has been stained with antibody against COXI and a FITC-conjugated secondary antibody (both molecular probes). The embryo was imaged with a confocal microscope (Leica Microsystems Ltd., Buckinghamshire, UK) using an X10 objective and X63 digital zoom. FITC excitation was at 488 nm and detection was between 500 and 535 nm.

Academic Press is an imprint of Elsevier
525 B Street, Suite 1900, San Diego, California 92101-4495
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2007, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2007 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0070-2153/2007 $35.00

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

For information on all Elsevier Academic Press publications
visit our Web site at www.books.elsevier.com

ISBN-10: 0-12-373662-5

PRINTED IN THE UNITED STATES OF AMERICA
07 08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

ELSEVIER BOOK AID International Sabre Foundation
Contents

Contributors ix
Preface xiii

Section I: The Mitochondrion and Gametes 1

1

The Role of the Mitochondrion in Sperm Function: Is There a Place for Oxidative Phosphorylation or Is This a Purely Glycolytic Process?
Eduardo Ruiz-Pesini, Carmen Diéz-Sánchez, Manuel José López-Pérez, and José Antonio Enríquez

I. Introduction 3
II. Spermiogenesis: Removing Everything But the Essential 4
III. Sperm Mitochondria Are Required for Functional Purposes 6
IV. Is Glycolysis Required for Sperm Motility? 9
V. Substrates Available for the Supply of Energy 11
VI. Concluding Remarks 13
Acknowledgments 14
References 14

2

The Role of Mitochondrial Function in the Oocyte and Embryo
Rémi Dumollard, Michael Duchen, and John Carroll

I. Introduction 22
II. Mitochondrial Generation and Distribution in Eggs and Embryos 25
III. Studying Mitochondria in Eggs and Embryos 27
IV. Mitochondria and Energy Production in the Embryo 31
V. Mitochondria and Ca^{2+} Homeostasis in Eggs and Embryos 33
VI. Ca^{2+}-Induced Mitochondrial Activity: Matching ATP Supply and Demand 34
VII. Mitochondria and Redox Metabolism in the Embryo 34
VIII. Impact of Mitochondrial Activity on Embryonic Development 37
IX. Mitochondria and Apoptosis in the Embryo 40
X. Conclusions and Perspectives 41
Acknowledgments 42
References 42
Cybrid Models of mtDNA Disease and Transmission, from Cells to Mice
Ian A. Trounce and Carl A. Pinkert

I. What Can Be Learned from Cybrids About mtDNA Disease? 158
II. Animal Modeling of mtDNA Transmission and Human Disease: From Transgenesis to Transmitochondrial Cybrid Models 169
III. Summary 176
References 176

Section III: The Use of Assisted Reproductive Technologies to Regulate mtDNA Disease 185

The Use of Micromanipulation Methods as a Tool to Prevention of Transmission of Mutated Mitochondrial DNA
Helena Fulka and Josef Fulka, Jr.

I. Biological Material: Oocytes and Zygotes 188
II. Technical Equipment 189
III. Germinal Vesicle Transfer 190
IV. Short- and Long-Term Storage of Nuclear Material and Asynchronous GV to Cytoplasm Transfer 194
V. Chromosome Group Transfer 198
VI. Transfer of Pronuclei 203
VII. Conclusions 207
Acknowledgments 207
References 208

Difficulties and Possible Solutions in the Genetic Management of mtDNA Disease in the Preimplantation Embryo
J. Poulton, P. Oakeshott, and S. Kennedy

I. Heteroplasmy of mtDNA Presents Problems for Chorionic Villus Sampling 214
II. The Mitochondrial Bottleneck 217
III. Management Options Beyond CVS 220
References 223
Section IV: The Effects of Invasive Assisted Reproductive Technologies on mtDNA Transmission 227

Impact of Assisted Reproductive Technologies: A Mitochondrial Perspective of Cytoplasmic Transplantation
A. J. Harvey, T. C. Gibson, T. M. Quebedeaux, and C. A. Brenner

I. Why Are Invasive Assisted Reproductive Technology Procedures Important? 230
II. Cytoplasmic Transfer: Animal Models That May Assist Human Infertility Therapeutics 232
III. The Mitochondrial Genome and Mitochondrial Biogenesis 233
IV. Molecular Control of Mitochondrial Function in Preimplantation Embryos 237
V. Mitochondrial Copy Number, Deletions, and Mutations 239
VI. Oocyte and Embryo Mitochondrial Localization Patterns 242
VII. Implications of Mitochondrial Heteroplasmy in Infertility, Mitochondrial Disease, and Stem Cell Therapeutics 243
References 244

Nuclear Transfer: Preservation of a Nuclear Genome at the Expense of Its Associated mtDNA Genome(s)
Emma J. Bowles, Keith H. S. Campbell, and Justin C. St. John

I. Introduction 252
II. Adaptations to NT 252
III. Applications of NT 255
IV. Health Problems Associated with NT 257
V. Possible Causes of NT Failure 258
VI. Are All the Potential Reasons for Low Success Rates in NT Interlinked? 274
VII. Conclusions 277
References 277

Index 291
Contents of Previous Volumes 307