cis-trans Isomerization in Biochemistry

Christophe Dugave
Preface XI

List of Contributors XIII

1 Nomenclature 1

Christophe Dugave

2 General Mechanisms of Cis-Trans Isomerization: A Rapid Survey 7

Christophe Dugave

2.1 Introduction 7

2.2 Homolytic Cis-Trans Isomerization 7

2.3 Heterolytic Cis-Trans Isomerization 10

3 Mechanisms of Cis-Trans Isomerization around the Carbon-Carbon Double Bonds via the Triplet State 15

Yasushi Koyama, Yoshinori Kakitani, and Hiroyoshi Nagae

3.1 A Concept of a Triplet-Excited Region 15

3.2 Triplet-State Isomerization in Retinal 17

3.2.1 Cis-Trans Isomerization Examined by Electronic Absorption and Raman Spectroscopies and by High-Performance Liquid Chromatography Analysis 17

3.2.2 Triplet-Excited Region in All-trans-Retinal Shown in Terms of Stretching Force Constants Determined by Raman Spectroscopy and Normal Coordinate Analysis 22

3.2.3 Dynamic Triplet-Excited Region in Retinal As Revealed by Deuteration Effects on the Quantum Yields of Isomerization via the T¹ State 24

3.2.4 Summary and Future Trends 26

3.3 Triplet-State Isomerization in 0-Carotene and Spheroidene 27

3.3.1 Cis-Trans Isomerization in 0-Carotene Studied by Electronic Absorption and Raman Spectroscopies and by HPLC Analysis 27
3.3.2 Cis-Trans Isomerization in Spheroidene Studied by Time-Resolved Absorption Spectroscopy and by HPLC Analysis 32

3.3.3 The Triplet-Excited Region of All-trans-Spheroidene in Solution and the Triplet-State Structure of 15-cis-Spheroidene Bound to the Bacterial Reaction Center Determined by Raman Spectroscopy and Normal Coordinate Analysis 35

3.3.3.1 All-trans-Spheroidene in Solution 35

3.3.3.2 15-cis-Spheroidene Bound to the Reaction Center 37

3.3.4 Conformational Changes and the Inversion of Spin-Polarization Identified by Low-Temperature Electron Paramagnetic Resonance Spectroscopy of the Reaction Center-Bound 15-cis-Spheroidene: A Hypothetical Mechanism of Triplet-Energy Dissipation 39

3.3.5 Summary and Future Trends 46

3.4 Spectroscopic and Analytical Techniques for Studying Cis-Trans Isomerization in the T1 State 47

3.4.1 Spectroscopic Techniques: Electronic Absorption, Raman, and Magnetic Resonance Spectroscopies 47

3.4.2 A Useful Analytical Technique: Singular-Value Decomposition Followed by Global Fitting 48

4 Retinal Binding Proteins 53

4.1 Retinal Chromophore in Rhodopsins 53

4.1.1 Specific Color Regulation of the Retinal Chromophore in Protein 53

4.1.2 Unique Photochemistry of the Retinal Chromophore in Protein 56

4.2 Photoisomerization in Visual Rhodopsins 57

4.2.1 Structure and Function of Visual Rhodopsins 57

4.2.2 Primary Process in Vision Studied by Ultrafast Spectroscopy 59

4.2.3 Structural Changes of the Chromophore and Protein upon Retinal Photoisomerization 64

4.3 Photoisomerization in Archaeal Rhodopsins 66

4.3.1 Structure and Function of Archaeal Rhodopsin 66

4.3.2 Primary Process in Bacterial Photosynthesis and Light Sensor Studied by Ultrafast Spectroscopy 68

4.3.3 Structural Changes of the Chromophore and Protein upon Retinal Photoisomerization 69

4.4 Summary and Prospects 72

5 Non-Retinal Chromophoric Proteins 77

5.1 Introduction 77

5.2 Photoactive Yellow Protein 77

5.3 Green Fluorescent Protein and Other GFP-like Proteins 79

5.4 Phytochromes 89
6 Fatty Acids and Phospholipids 95
Chryssostomos Chatgilialoglu and Carla Ferreri

6.1 Introduction 95
6.2 Enzyme-Catalyzed Cis-Trans Isomerization of Unsaturated Fatty Acid Residues in Bacteria 97
6.3 Radical-Catalyzed Cis-Trans Isomerization of Unsaturated Lipids and its Effect on Biological Membranes 101
6.3.1 Geometric Isomerization of Unsaturated Fatty Acids in Solution 101
6.3.2 Isomerization of Phosphatidylcholine in Large Unilamellar Vesicles 103
6.3.3 Biological Consequences 106
6.4 Perspectives and Future Research 110

7 In Silico Dynamic Studies of Cis-Trans Isomerization in Organic and Biological Systems 113
Ute F. Röhrig, Ivano Tavernelli, and Ursula Rothlisberger

7.1 Introduction 113
7.2 Computational Methods 116
7.2.1 Time-Dependent Density Functional Theory (TDDFT) 116
7.2.2 Restricted Open-Shell Kohn-Sham Theory (ROKS) 120
7.3 Theoretical Aspects of CTI 122
7.3.1 Protonated Schiff Bases 123
7.3.2 Formaldimine 124
7.4 CTI in PSB5 and Formaldimine 124
7.4.1 Protonated Schiff Base (PSB5) 124
7.4.2 Formaldimine 129
7.5 CTI in Rhodopsin 132
7.5.1 Introduction 132
7.5.2 Classical and QM/MM Studies of the CTI in Rhodopsin 133
7.6 Summary and Conclusions 137

8 Chemical Aspects of the Restricted Rotation of Esters, Amides, and Related Compounds 143
Christophe Dugan

8.1 Thermodynamic and Kinetic Aspects of Cis-Trans Isomerization 143
8.1.1 Esters and Thioesters 144
8.1.2 Amides and Thioamides 145
8.1.3 Oxalamides and Hydrazides 147
8.1.4 Carbamates and Ureas 148
8.2 Influence of the Environment on CTI 150
8.2.1 Solvent and Concentration 150
8.2.2 pH and Salts 152
8.2.3 Temperature 153
8.3 The Study of CTI of Amides and other Conjugated n-Systems

8.3.1 Spectroscopic Techniques

8.3.1.1 NMR Spectroscopy

8.3.1.2 Spectrometric and Fluorimetric Assays

8.3.1.3 Other Spectroscopic Techniques

8.3.2 Separation of Z and E Isomers

8.3.3 Models and Mimics for the Study of Amide CTI: Towards Multiple CTI Pathways

8.3.3.1 Acid/H-Bond-Catalyzed CTI

8.3.3.2 Nucleophilic/Basic Catalysis of CTI

8.3.3.3 Cation-Catalyzed CTI

8.3.3.4 Light-Induced CTI

9 Amide Cis-Trans Isomerization in Peptides and Proteins

9.1 Imidic and Secondary Amide Peptide Bond Conformation

9.1.1 Simple Amides

9.1.2 Secondary Amide Peptide Bonds

9.1.3 Imidic Peptide Bonds

9.1.4 Solvent and pH Effects

9.1.5 Sequence-Specific Effects

9.1.6 Secondary Structure Formation and CTI

9.2 Amide Relevant Conformations in Proteins

9.3 Native State Peptide Bond Isomerization

9.4 Biological Consequences

10 Enzymes Catalyzing Peptide Bond Cis-Trans Isomerizations

10.1 Introduction

10.2 Cyclophilins

10.3 FK506 Binding Proteins (FKBPs)

10.4 Trigger Factor

10.5 Parvulins

10.6 Secondary Amide Peptide Bond Cis-Trans Isomerases

10.7 Catalytic Mechanism of Peptide Bond Cis-Trans Isomerases

11 Tailoring the Cis-Trans Isomerization of Amides

11.1 Introduction

11.2 Substituted Prolines

11.2.1 Hydroxyprolines

11.2.2 Mercaptoproline
12.4.3 Library Screening Versus in Silico Design: Current Status and Future Prospects 284
12.5 Conclusion and Perspectives 288

13 Other Cis-Trans Isomerizations in Organic Molecules and Biomolecules 295
Muriel Gondry and Christophe Dugave

13.1 Introduction 295
13.2 Cis-Trans Isomerization around Single Bonds 295
13.2.1 Cis-Trans Isomerism of Aryl Compounds 295
13.2.2 Disulfide Bonds 297
13.2.3 Amide Surrogates with Restricted Rotation of a u-Bond 298
13.3 C=N-containing Compounds 300
13.3.1 Oximes and Nitroso Compounds 300
13.3.2 Imines and Schiff Bases 300
13.4 Dehydroamino Acids and Dehydropeptides 303
13.4.1 Acryloyl Peptides, Acrylates and Related Molecules 303
13.4.2 Naturally Occurring Dehydroamino Acids and Dehydropeptides 305
13.4.3 Synthetic Dehydroamino Acids and Dehydropeptides 308
13.5 Phototunable Biomolecules Containing an Azobenzene Moiety 310
13.5.1 Phototunable Ligands 310
13.5.2 Phototunable Conformation of Peptides 312
13.5.3 Modifications of Proteins with Photoisomerizable Motifs 313
13.5.4 Other Phototunable Biomolecules 315

14 Cis-Trans Isomerism in Metal Complexes 321
Alzir Azevedo Batista and Salete Linhares Queiroz

14.1 Introduction 321
14.1.1 Trans Effect 324
14.1.2 Protonation of the Leaving Group 326
14.1.3 Separation or Purification of Cis-Trans Isomers 327
14.1.4 Identification of Cis-Trans Isomers 327
14.2 The Cis-Trans Isomerization of Metal Complexes: Mechanisms and Effects 330
14.2.1 Cis or Trans Isomer? 330
14.2.2 Isomerization Processes 331
14.3 Cis-Trans Isomers of Metal Complexes as Potential Therapeutics 334
14.4 Applications of Cis-Trans Isomerization of Metal Complexes in Supramolecular Chemistry 337
14.5 Final Remarks 341

Index 345