Structural Biology of Membrane Proteins

Edited by

Reinhard Grisshammer and Susan K. Buchanan
Laboratory of Molecular Biology, National Institutes of Health, Bethesda, Maryland, USA

RSCPublishing
The cover illustration shows the structure of the outer membrane porin MspA from the soil bacterium *Mycobacterium smegmatis*. Mycobacteria, which have an unusual outer membrane, are considered a third group equidistant from the Gram-positive and Gram-negative bacteria. The MspA protein consists of eight subunits, forming a goblet-like structure around a single central channel. The upper part of the goblet consists of eight rim domains. The lower part contains two consecutive β-barrels with $8 \times 2 = 16$ strands forming the stem and the base regions of the goblet. For details about crystallization and structure, see the chapter by G.E. Schulz.
Contents

Section 1 Expression and Purification of Membrane Proteins

Chapter 1 Refolding of G-Protein-Coupled Receptors 3
Jean-Louis Banères
1 Introduction 3
2 Refolding of Membrane Proteins 4
3 In Vitro Protein Refolding 6
4 GPCR In Vitro Refolding 6
 4.1 Resolubilization from Inclusion Bodies 6
 4.2 Refolding 7
 4.3 Refolding of GPCR Fragments 8
 4.4 Refolding of Intact GPCRs 9
5 Conclusion 12
References 13

Chapter 2 Expression of Genes Encoding Eukaryotic Membrane Proteins in Mammalian Cells 15
Philip J. Reeves
1 Introduction 15
2 Mammalian Cell Hosts and Gene Expression Vectors 16
3 Delivery and Maintenance of Expression Vectors in Mammalian Cells 16
 3.1 Transient Transfection 17
 3.2 Stable Transfection 17
 3.2.1 A Procedure for Stable Transfection of HEK293S Cells 18
 3.3 Stable Episomal Replication 19
 3.4 Viral Infection 19
4 HEK293S Stable Cell Lines for High-Level Expression of Eukaryotic Membrane Proteins 20
 4.1 Constitutive Expression 20
 4.2 Tetracycline-Regulated Gene Expression 21
Chapter 3 Expression of Recombinant G-Protein Coupled Receptors for Structural Biology

Filippo Mancia and Wayne A. Hendrickson

1 Introduction
 1.1 Signal Transduction through G-protein Coupled Receptors
 1.2 Structural and Functional Characteristics of GPCRs
 1.3 Structure Determination of GPCRs

2 Expression of Recombinant GPCRs
 2.1 Overview
 2.2 Bacteria as Hosts for the Production of Functional GPCRs
 2.3 Production of GPCRs in Stably Transfected Mammalian Cells
 2.4 Production of GPCRs via Transient Transfection or Viral Infection of Mammalian Cells
 2.5 Production of GPCRs in Yeast
 2.6 Production of GPCRs in Insect Cells
 2.7 "In Vivo" Expression in the Eye
 2.8 Extra-Membranous Expression Systems
Chapter 4 The Purification of G-Protein Coupled Receptors for Crystallization

Tony Warne and Gebhard F.X. Schertler

1 Introduction
 1.1 Structural Studies of G-Protein Coupled Receptors
 1.2 The Turkey Erythrocyte Beta-Adrenergic Receptor

2 Heterogeneity of Overexpressed Receptors
 2.1 Heterogeneity of GPCRs due to Post-Translational Modifications
 2.1.1 N-Glycosylation
 2.1.2 Palmitoylation
 2.1.3 Phosphorylation
 2.2 Other Sources of Heterogeneity

3 Membrane Fractionation, Solubilization, and Detergent Selection
 3.1 Detergents for Solubilization
 3.2 Detergents for Final Purification Steps and Crystallization

4 Purification
 4.1 Use of Purification Tags and Fusions
 4.2 Removal of Tags and Fusions
 4.3 Ligand Affinity Chromatography
 4.4 Final Purification Steps before Crystallization and Assembly of Complexes
 4.5 Lipid Content during Purification

5 Final Quality Control, Monitoring Protein Stability, Aggregational State, Lipid, and Bound Detergent

6 Conclusions

Acknowledgments
References

Chapter 5 An Introduction to Detergents and Their Use in Membrane Protein Studies

Fabien Walas, Hiroyoshi Matsumura and Ben Luisi

1 Introduction
2 Physical Properties of Detergents Used in Membrane Protein Studies

2.1 Properties and Classification of Detergents

2.1.1 Properties of Detergents

2.1.2 Ionic Detergents

2.1.3 Non-Ionic Detergents

2.1.4 Zwitterionic Detergents

2.1.5 Amphipols

2.2 Lipopeptide Detergents

2.3 Supplements and Additives for Detergents

3 Extraction and Purification Procedure Using Common Detergents

3.1 Choice of Detergent

3.2 Purification of Membrane Proteins in the Presence of Detergents

3.2.1 Strategy and Method

3.2.2 Detergent Exchange or Removal

4 Use of Detergents in Membrane Protein Crystallization

4.1 Introduction

4.2 Membrane Protein Crystallization in Lipid Cubic Phase

4.3 Crystal Lattice Organization

4.4 Example of Detergent Interactions with β-Sheet Membrane Proteins

4.4.1 Crystal Structure of VceC, an Outer Membrane Protein from Vibrio Cholerae

4.4.2 Detergent Organization in Crystals of Monomeric Outer Membrane Phospholipase A

4.5 Example of Detergent and α-Helical Type Membrane Protein Contact

4.5.1 Crystal Structure of Rotor Rings

4.5.2 Structure of Bovine Rhodopsin in a Trigonal Crystal Form

4.6 A Synopsis of Detergent–Protein Interactions in Crystals

5 Conclusion

Acknowledgements

References
Section 2 Methods for Structural Characterization of Membrane Proteins

Chapter 6 Solution NMR Approaches to the Structure and Dynamics of Integral Membrane Proteins

John H. Bushweller, Tomasz Cierpicki and Yunpeng Zhou

1 Introduction 99
2 Protein Production and Optimization for NMR Studies 100
2.1 Protein Production 100
2.2 Sample Optimization 101
3 NMR Methodology for the Study of Integral Membrane Proteins 102
3.1 High Level Deuteration and Assignment Strategies Using TROSY-Based Experiments 102
3.2 Carbon Detected Experiments: Breaking the Limit of Sensitivity 104
3.3 Use of Methyl Protonation to Increase the Number of Nuclear Overhauser Effect-Derived Distance Constraints 105
3.4 Application of Electron-Nuclear Relaxation for Long Range Distances 106
3.5 Residual Dipolar Couplings 106
4 Solution NMR Structures of Helical Integral Membrane Proteins 107
4.1 F1Fo ATP Synthase Subunit c from E. coli 107
4.2 MerF 108
4.3 Mistic 109
5 Solution NMR Structures of β-Barrel Membrane Proteins 109
5.1 OmpA 110
5.2 OmpX 110
5.3 PagP 111
6 Solution NMR Characterization of Membrane Protein Dynamics 111
6.1 OmpA 112
6.2 PagP 112
7 Future Directions 113
References 114
Chapter 7 Membrane Proteins Studied by Solid-State NMR

Adam Lange and Marc Baldus

1 Introduction
2 Sample Preparation and Methodology
 2.1 Isotope Labelling and Solid-State NMR Sample Preparation
 2.2 Resonance Assignments and Structure Determination
3 Applications
 3.1 Membrane Protein Structure
 3.2 Ligand Binding to Membrane Proteins
 3.3 Membrane Protein Dynamics
4 Conclusions
Acknowledgements
References

Chapter 8 Assessing Structure and Dynamics of Native Membrane Proteins

W. Kukulski, T. Kaufmann, T. Braun, H. Rémigy, D. Fotiadis and A. Engel

Abstract
1 Introduction
2 Assembly of 2D Crystals
3 Electron Microscopy
 3.1 Image Formation
 3.2 Electron Diffraction
 3.3 Specimen Preparation
 3.4 Data Processing
4 Atomic Force Microscopy
 4.1 Image Formation
 4.2 Sample Preparation
 4.3 Optimized Imaging Conditions
 4.4 Imaging Native Membranes
 4.5 Nanodissection
 4.6 Image Processing
5 Conclusion and Perspectives
References

Chapter 9 State-of-the-Art Methods in Electron Microscopy, including Single-Particle Analysis

Vinzenz M. Unger
1 Introduction
Chapter 10 Atomic Resolution Structures of Integral Membrane Proteins Using Cubic Lipid Phase Crystallization

Hartmut Luecke

1 Introduction 173

1.1 Nuclear Magnetic Resonance Techniques 173
1.2 Crystallography 174
1.3 Crystallization Techniques 174
1.3.1 Vapor Diffusion 174
1.3.2 Microdialysis Crystallization 175
1.4 Special Issues of Membrane Protein Crystallization 175
1.5 History of Membrane Protein Crystallization 176
1.6 Aim of this Chapter 177

2 Membrane Protein Crystals and Crystallization 177
Section 3 New Membrane Protein Structures

Chapter 11 Aquaporins: Integral Membrane Channel Proteins
Robert M. Stroud, William E.C. Harries, John Lee, Shahram Khademi and David Savage

1 Introduction 195
2 The Exclusion Barrier to Ions and Protons in Aquaporins 199
 2.1 Global Orientational Tuning by the NPA Motif 199
 2.2 Helix Dipole 201
 2.3 Electrostatic Desolvation Penalty 201
3 Selectivity in the Aquaporin Family 201
4 Permeation of Substances Other than Water and Glycerol 203
 4.1 Conductance of Other Molecules 203
5 Aquaporin Monomer Associations and their Functional Implications 204
 5.1 The Eye Lens: A Brief History of Aquaporin 0 Research 204
 5.2 Aquaporin 0 Monomer Structure and Organization 205
 5.3 Extracellular Domain Interactions 208
Acknowledgment 209
References 209

Chapter 12 Gas Channels for Ammonia
Shahram Khademi and Robert M. Stroud
1 Introduction 212
2 The Structure of Ammonia Channel 213
Chapter 13 Channels in the Outer Membrane of Mycobacter

Georg E. Schulz

1 Introduction 235
2 Structure Determination 236
2.1 Protein Production 236
2.2 Crystallization 238
2.3 X-Ray Analysis 239
3 Structure Description 240
3.1 The Channel 240
3.2 β-Barrels 242
3.3 Protein Properties 244
4 The Outer Membrane 245
4.1 Membrane Structure 245
4.2 Porin Localization 248
5 Conclusion 249
Acknowledgments 249
References 249

Chapter 14 The Structure of the SecY Protein Translocation Channel

Bert Van Den Berg and Ian Collinson

1 Introduction 252
1.1 The Sec61/SecY Complex 253
1.2 The Three Different Translocation Modes 253
<table>
<thead>
<tr>
<th>Chapter 15</th>
<th>Structure and Function of the Translocator Domain of Bacterial Autotransporters</th>
<th>270</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Van Ulsen, Piet Gros and Jan Tommassen</td>
<td>1 Introduction</td>
<td>270</td>
</tr>
<tr>
<td>2 The NalP Autotransporter</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>3 The Translocator Domain of Autotransporters</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>4 Purification and In Vitro Folding of the NalP Translocator Domain</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>5 The Structure of the NalP Translocator Domain</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>6 Comparison of the NalP Translocator Domain to Other Translocator Domains and to ToIC</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>7 The Autotransporter Secretion Mechanism</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>285</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 16	X-Ray Crystallographic Structures of Sarcoplasmic Reticulum Ca^{2+}-ATPase at the Atomic Level	288
Jesper Vuust Møller, Poul Nissen and Thomas Lykke-Møller Sørensen	1 Introduction	288
2 The Transport Scheme and Thermodynamics of Ca^{2+} Transport	289	
3 Overall structure of Ca^{2+}-ATPase	290	
4 Transport Models	292	
5 Initialization of the Cycle: Phosphorylation and Calcium Ion Occlusion	293	
6 The Dephosphorylation Step and Proton Counter Transport	297	
7 Getting Ca^{2+} in and out of the Membrane	300	
8 Compact vs. Open Conformations of SERCA	302	
Chapter 17 Comparison of the Multidrug Transporter EmrE Structures Determined by Electron Cryomicroscopy and X-ray Crystallography
C.G. Tate
1 Introduction
2 The Oligomeric State of EmrE
3 Transport Activity of EmrE
4 Structure of EmrE Determined by Electron Cryomicroscopy
5 Comparison of the EmrE Structure Determined by Electron Crystallography with a 3.8 Å Resolution Structure Determined by X-ray Crystallography
6 Conclusions
References

Chapter 18 Structure of Photosystems I and II
Raimund Fromme, Ingo Grotjohann and Petra Fromme
1 Introduction to Oxygenic Photosynthesis
2 Photosystem II
2.1 Overview
2.2 The Protein subunits in Photosystem II
2.2.1 The Core Subunits D1 and D2 (PsbA and PsbD)
2.2.2 The Antenna Proteins CP47 and CP43 (PsbB and PsbC)
2.2.3 Cytochrome b$_{559}$ (PsbE and PsbF)
2.2.4 The Small Membrane-Intrinsic Subunits
2.2.5 The Lumenal Subunits PsbO, PsbV, and PsbU
2.3 The Electron Transport Chain of Photosystem II
2.3.1 The Acceptor Site of the Electron Transport Chain in Photosystem II
2.3.2 The Donor Site of the Electron Transfer Chain of Photosystem II
Chapter 19 Glutamate Receptor Ion Channels: Structural Insights into Molecular Mechanisms

Avinash Gill and Dean R. Madden

1 Introduction

1.1 Physiological and Pathophysiological Roles of the Ionotropic Glutamate Receptors

1.2 Medicinal Chemistry

1.3 Ionotropic Glutamate Receptor Subunits Are Modular

2 Studies of the Ligand-Binding Domain

2.1 Overall Structure

2.2 Pharmacological Specificity

2.3 Ligand-Binding Domain Conformational Changes

2.4 Correlation with Channel Activation

2.5 Dimerization
2.6 Desensitization and the Stability of the Dimer Interface 356

3 The Functional Architecture of a Glutamate Receptor Ion Channel 358
3.1 Structure of a Complete Ionotropic Glutamate Receptor 358
3.2 The Role of the N-Terminal Domain in Subunit Assembly 360
3.3 The Organization of the Transmembrane Domains 361

4 A Working Model of AMPA Receptor Function 362
4.1 LBD Mutations Affecting Binding and Gating 363
4.2 Subunit Gating Behavior 363

5 Open Questions 364
5.1 Different Models of Partial Agonism 364
5.2 Multistate Kinetic Models 366
5.3 Structural Prospects 366
5.4 Auxiliary Proteins 367

References 367

Chapter 20 The Mitochondrial ADP/ATP Carrier 373
Eva Pebay-Peyroula
1 Introduction 373
2 Mitochondrial Carriers and ADP/ATP Carrier 374
3 Crystallization 375
4 Diffraction, Phasing and Model Building 378
5 Structure Analysis 380
6 Functional Implications 384
6.1 Nucleotide Binding 384
6.2 Conformational Changes 385
6.3 Transport Regulation 386
7 Future Developments and Conclusions 386
Acknowledgments 387
References 387

Subject Index 390