Auditory Spectral Processing

EDITED BY

MANUEL S. MALMIERCA
Laboratory for the Neurobiology of Hearing
The Institute of Neuroscience of ‘Castilla y Leon’ (INCyL)
Faculty of Medicine, University of Salamanca
Campus ‘Miguel de Unamuno’
37007 Salamanca, Spain

DEXTER R. F. IRVINE
Monash University
Department of Psychology
School of Psychology, Psychiatry, and Psychological Medicine
Faculty of Medicine, Nursing, and Health Sciences
Vic 3800, Australia
CONTENTS

Contributors .. xi

Auditory Spectral Processing: An Overview
Dexter R. F. Irvine and Manuel S. Malmierca

References .. 5

Spectral Processing by the Peripheral Auditory System: Facts and Models
Enrique A. Lopez-Poveda

I. Introduction .. 8
II. Basic Response Properties of Individual Auditory Nerve Fibers 8
III. Auditory Nerve Representation of the Spectra of Complex Sounds 20
IV. Phenomenological Models of Signal Processing by the Peripheral Auditory System ... 22
References .. 40

Basic Psychophysics of Human Spectral Processing
Brian C. J. Moore

I. Introduction .. 50
II. The Power-Spectrum Model and the Concept of the Critical Band 51
III. Estimating the Shape of the Auditory Filter ... 53
IV. Summary of the Characteristics of the Auditory Filter Derived Using Simultaneous Masking ... 60
V. Masking Patterns and Excitation Patterns .. 63
VI. Non-Simultaneous Masking .. 68
VII. The Audibility of Partials in Complex Tones ... 73
VIII. Frequency Resolution in Impaired Ears .. 75
References .. 79
Across-Channel Spectral Processing

JOHN H. GROSE, JOSEPH W. HALL III, AND EMILY BUSS

I. Introduction .. 88
II. Spectral Integration .. 88
III. Virtual Pitch Perception .. 92
IV. Monaural Envelope Correlation Perception 93
V. Disadvantageous Effects Related to Remote Energy from the Target Frequency ... 94
VI. Advantageous Effects Related to Remote Energy from the Target Frequency ... 100
VII. Model(s) of Across-Frequency-Channel Processing 104
VIII. Perceptual Organization and Across-Channel Spectral Processing 109
IX. Conclusions and Future Research Directions 112
References .. 112

Speech and Music Have Different Requirements for Spectral Resolution

ROBERT V. SHANNON

I. Introduction .. 121
II. What Is a Spectral Channel? .. 122
III. Comparison of Spectral Resolution in Normal Hearing and Cochlear Implants ... 123
IV. Effects of Spectral Resolution and Distortion on Speech 125
V. Effects of Spectral Resolution on Music ... 129
VI. Conclusions .. 132
References .. 132

Non-Linearities and the Representation of Auditory Spectra

ERIC D. YOUNG, JANE J. YU, AND LINA A. J. REISS

I. Introduction: Tuning Curves, Response Maps, and Non-Linearity.... 136
II. Examples of the Effects of Non-Linearity on Measures of Spectral Processing .. 137
III. Why Is Non-Linearity a Problem? ... 143
IV. Defining Tuning Through Non-Linear System Theory 144
V. The Weight Function Model ... 148
VI. Estimating Weights from Random Spectral Shapes (RSS) 150
VII. Weight Functions for a DCN Neuron: Interpretation of Second-Order Weights .. 151
VIII. Prediction of Responses to Arbitrary Stimuli as a Test of the Weight Model ... 154
IX. Non-Linearity Does Not Mean Less Information About the Stimulus ... 158
X. Conclusions: Implications for Models of Spectral Representation in the Auditory System 162
References .. 165
Spectral Processing in the Inferior Colliculus

Kevin A. Davis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>169</td>
</tr>
<tr>
<td>II. Neuronal Architecture of the IC</td>
<td>170</td>
</tr>
<tr>
<td>III. Ascending Pathways to the ICC</td>
<td>173</td>
</tr>
<tr>
<td>IV. Synaptic Domains in the ICC</td>
<td>175</td>
</tr>
<tr>
<td>V. Spectral Processing in Brainstem Nuclei</td>
<td>177</td>
</tr>
<tr>
<td>VI. Frequency Response Map Types in the ICC</td>
<td>180</td>
</tr>
<tr>
<td>VII. How Do the Various Inputs to the ICC Shape the Frequency Response Areas of Units in ICC?</td>
<td>185</td>
</tr>
<tr>
<td>VIII. On the Roles of the ICC in Processing Spectral Information</td>
<td>197</td>
</tr>
</tbody>
</table>

References | 199 |

Neural Mechanisms for Spectral Analysis in the Auditory Midbrain, Thalamus, and Cortex

Monty A. Escabí and Heather L. Read

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>208</td>
</tr>
<tr>
<td>II. Principles of Spectral Analysis in ICC, MGB, and AI</td>
<td>209</td>
</tr>
<tr>
<td>III. Sharpness of Tuning, Bandwidth, and Level Dependence</td>
<td>209</td>
</tr>
<tr>
<td>IV. Excitatory and Inhibitory Receptive Field Properties</td>
<td>213</td>
</tr>
<tr>
<td>V. Spectral and Temporal Integration</td>
<td>217</td>
</tr>
<tr>
<td>VI. Organization of Spectral Receptive Field Properties in Neuronal Populations of ICC, MGBv, and AI</td>
<td>228</td>
</tr>
<tr>
<td>VII. Primary Auditory Cortical Acoustic Feature Representation and Processing</td>
<td>237</td>
</tr>
<tr>
<td>VIII. Physiologic Distinctions or Transformations in AI</td>
<td>240</td>
</tr>
<tr>
<td>IX. Conclusions</td>
<td>242</td>
</tr>
</tbody>
</table>

References | 244 |

Spectral Processing in the Auditory Cortex

Mitchell L. Sutter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Defining Key Issues in Spectral Processing</td>
<td>254</td>
</tr>
<tr>
<td>II. Different Methods of Measuring Spectral Processing: Approaches Using Tonal Stimuli</td>
<td>261</td>
</tr>
<tr>
<td>III. Different Methods of Measuring Spectral Processing: Measuring Spectral RFs with Broad-Band Stimuli</td>
<td>270</td>
</tr>
<tr>
<td>IV. Spectral Integration and the Responses of Auditory Cortical Neurons</td>
<td>281</td>
</tr>
<tr>
<td>V. The Functional Organization of Auditory Cortex for Spectral Processing</td>
<td>283</td>
</tr>
</tbody>
</table>

References | 289 |
CONTENTS

Processing of Dynamic Spectral Properties of Sounds

ADRIAN REES AND MANUEL S. MALMIERCA

I. Introduction .. 300
II. Auditory Nerve Fibers: Responses to FM Predicted by Pure-Tone Responses 301
III. Cochlear Nuclei: The Appearance of Directional Asymmetry for FM .. 303
IV. Higher Brainstem and Midbrain Processing of FM ... 307
V. Responses to FM in Thalamus and Cortex ... 312
VI. Conclusions .. 325
References .. 326

Representations of Spectral Coding in the Human Brain

DEBORAH A. HALL

I. Introduction ... 332
II. Techniques and Concerns About Spatial Resolution .. 333
III. Variability in Structure-Function Relations .. 340
IV. Single Frequency Tones .. 343
V. Wide-Spectrum Signals ... 351
VI. Pitch ... 353
VII. Spectral Cues for Sound Localization .. 357
VIII. Speech and Music ... 358
IX. Conclusions ... 362
References .. 363

Spectral Processing and Sound Source Determination

DONAL G. SINEX

I. Introduction ... 372
II. Processes That Underlie Sound-Source Determination .. 373
III. Neural Representation of Harmonic and Mistuned Complex Tones .. 381
IV. The Possible Relation Between the Responses of IC Neurons and Psychoacoustic Data 388
V. Conclusions ... 394
References .. 394

Spectral Information in Sound Localization

SIMON CARLILE, RUSSELL MARTIN, AND KEN McANALLY

I. Introduction ... 399
II. Spectral Cues to Sound Location .. 401
III. Processing of Spectral Cues to Sound Location .. 411