NMR Imaging in Chemical Engineering

Edited by
Siegfried Stapf and Song-I Han

WILEY-VCH Verlag GmbH & Co. KGaA
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>Hydrodynamic, Electrodynamic and Thermodynamic Transport in Porous Model Objects: Magnetic Resonance Mapping Experiments and Simulations</td>
<td>205-228</td>
</tr>
<tr>
<td>3.1</td>
<td>Diffusion in Nanoporous Materials</td>
<td>231-247</td>
</tr>
<tr>
<td>3.2</td>
<td>Application of Magnetic Resonance Imaging to the Study of the Filtration Process</td>
<td>250-262</td>
</tr>
<tr>
<td>3.3</td>
<td>Multiscale Approach to Catalyst Design</td>
<td>263-280</td>
</tr>
<tr>
<td>3.4</td>
<td>Pure Phase Encode Magnetic Resonance Imaging of Concrete Building Materials</td>
<td>285-302</td>
</tr>
</tbody>
</table>
4.3 Imaging Complex Fluids in Complex Geometries 404
 Y. Xia and P. T. Callaghan
4.3.1 Introduction 404
4.3.2 Rheological Properties of Polymeric Flow 404
4.3.3 NMR Microscopy of Velocity 408
4.3.4 NMR Velocity Imaging of Fano Flow 410
4.3.5 Other Examples of Viscoelastic Flows 414
4.4 Quantitative Visualization of Taylor–Couette–Poiseuille Flows with MRI* 416
 John G. Georgiadis, L. Guy Raguin, and Kevin W. Moser
4.4.1 Introduction 416
4.4.2 Taylor–Couette–Poiseuille Flow 419
4.4.3 Future Directions 429
4.4.4 Summary 430
4.5 Two Phase Flow of Emulsions 433
 Nina C. Shapley and Marcos A. d'Avila
4.5.1 Introduction 433
4.5.2 NMRI Set-up and Methods 436
4.5.3 Complex Flows of Homogeneous Emulsions 444
4.5.4 Mixing of Concentrated Emulsions 447
4.5.5 Future Directions 451
4.6 Fluid Flow and Trans-membrane Exchange in a Hemodialyzer Module 457
 Song-I Han and Siegfried Stapf
4.6.1 Objective 457
4.6.2 Methods 457
4.6.3 Materials 458
4.6.4 Results and Discussion 459
4.6.5 Conclusion 469
4.7 NMR for Food Quality Control 471
 Michael J. McCarthy, Prem N. Gambhir, and Artem G. Goloshevsky
4.7.1 Introduction 471
4.7.2 Relationship of NMR Properties to Food Quality 473
4.7.3 Applications of NMR in Food Science and Technology 473
4.7.4 Summary 488
4.8 Granular Flow 490
 Eiichi Fukushima
4.8.1 Introduction 490
4.8.2 NMR Strategies 493
4.8.3 Systems Studied 501
4.8.4 Future Outlook 505
5 Reactors and Reactions

5.1 Magnetic Resonance Microscopy of Biofilm and Bioreactor Transport 509
Sarah L. Codd, Joseph D. Seymour, Erica L. Gjersing, Justin P. Gage, and Jennifer R. Brown

5.1.1 Introduction 509
5.1.2 Theory 510
5.1.3 Reactors 516
5.1.4 Conclusions 531

5.2 Two-phase Flow in Trickle-Bed Reactors 534
Lynn F. Gladden, Laura D. Anadon, Matthew H. M. Lim, and Andrew J. Sederman

5.2.1 Introduction to Magnetic Resonance Imaging of Trickle-bed Reactors 534
5.2.3 Unsteady-state Hydrodynamics in Trickle-bed Reactors 542
5.2.4 Summary 549

5.3 Hyperpolarized 129Xe NMR Spectroscopy, MRI and Dynamic NMR Microscopy for the In Situ Monitoring of Gas Dynamics in Opaque Media Including Combustion Processes 551
Galina E. Pavlovskaya and Thomas Meersmann

5.3.1 Introduction 551
5.3.2 Chemical Shift Selective Hp-129Xe MRI and NMR Microscopy 552
5.3.3 Dynamic NMR Microscopy of Gas Phase 557
5.3.4 In Situ NMR of Combustion 561
5.3.5 High Xenon Density Optical Pumping 566

5.4 In Situ Monitoring of Multiphase Catalytic Reactions at Elevated Temperatures by MRI and NMR 570
Igor V. Koptyug and Anna A. Lysova

5.4.1 Introduction 570
5.4.2 Experimental 571
5.4.3 Results and Discussion 574
5.4.4 Outlook 587

5.5 In Situ Reaction Imaging in Fixed-bed Reactors Using MRI 590
Lynn F. Gladden, Belinda S. Akpa, Michael D. Mantle, and Andrew J. Sederman

5.5.1 Introduction 590
5.5.2 Spatial Mapping of Conversion: Esterification Case Study 592
5.5.3 13C DEPT Imaging of Conversion and Selectivity 603
5.5.4 Future Directions 606

Index 609