Methods in Cell Biology
Prepared under the auspices of the American Society for Cell Biology

VOLUME 75
Cytometry, 4th Edition: New Developments

Edited by
Zbigniew Darzynkiewicz
Brander Cancer Research Institute
New York Medical College
Hawthorne, New York

Mario Roederer
Vaccine Research Center
National Institute of Allergy and Infectious Diseases
National Institutes of Health
Bethesda, Maryland

Hans Tanke
Department of Molecular Cell Biology
Leiden University Medical Center
Leiden, The Netherlands
CONTENTS

Contributors xvi
Preface xxi
Preface to the Third Edition xxiv
Preface to the Second Edition xxvii
Preface to the First Edition xxxi

PART I Instrumentation/Fluorochromes

1. Optimization of Emission Optics for Multicolor Flow Cytometry
 Nicole Baumgarth and Marty Bigos
 I. Introduction 3
 II. Fluorochromes 4
 III. Hardware Components Affecting Light Collection 8
 IV. Maximizing Signal Intensities 11
 V. Maximizing Signal Collection Quality 11
 VI. Emission Collection Optimization 14
 VII. Testing Emission Optics 16
 References 21

2. Two-Photon Tissue Cytometry
 Timothy Ragan, Ki Hean Kim, Karsten Bahlmann, and Peter T. C. So
 I. Introduction 23
 II. Technical Development of Two-Photon Tissue Cytometry 24
 III. Experimental Demonstration of Two-Photon Tissue Cytometry 32
 IV. Future Outlook 37
 V. Conclusion 37
 References 38
PART II General Techniques

9. Biohazard Sorting

Ingrid Schmid, Mario Roederer, Richard A. Koup, David Ambrozak, and Stephen P. Peletto

I. Introduction 221
II. Critical Aspects of the Procedure 222
III. Applications and Future Directions 238
References 239

10. Guidelines for the Presentation of Flow Cytometric Data

Mario Roederer, Zbigniew Darzynkiewicz, and David R. Parks

I. Introduction 241
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. General Principles of Graphical Presentation</td>
</tr>
<tr>
<td>III. Statistics</td>
</tr>
<tr>
<td>IV. Subset Analysis</td>
</tr>
<tr>
<td>V. Conclusion</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

11. Mechanism of Antitumor Drug Action Assessed by Cytometry
Frank Tragano

I. Introduction
II. Choice of a Model System
III. Drug Dose and Length of Exposure
IV. Single-Parameter DNA Histogram Analysis
V. Multiparameter Approaches
VI. Data Presentation
VII. Summary and Future Directions
References

12. Cytometric Methods to Detect Apoptosis
Zbigniew Darzynkiewicz, Xuan Huang, Masaki Okafuji, and Malcolm A. King

I. Introduction
II. Physical and Molecular Features of Cells Dying by Apoptosis or Necrosis
III. Different Time-Windows for Detection of Apoptosis: Possible Source of Error in Measurement of Incidence of Apoptosis
IV. Light-Scattering Properties of Cells Dying by Apoptosis
V. Mitochondrial Transmembrane Potential (ΔΨm)
VI. Activation of Caspases
VII. Annexin V Binding
VIII. DNA Fragmentation
IX. Susceptibility of DNA to Denaturation
X. Activation of "Tissue" Transglutaminase
XI. Measuring Incidence of Apoptosis: Which Method to Choose?
References

13. Real-Time Analysis of Apoptosis In Vivo
Pui Lee and Mark S. Segal

I. Introduction
II. In Vivo Membrane Markers
III. A New Generation of Caspase Markers
IV. Conclusion
References
PART III Immunology/T-Cell Responses

17. Flow Cytometry Applications of MHC Tetramers
John D. Altman
 - I. Introduction 433
 - II. Materials and Methods 436
 - III. Analyzing Tetramer Data 444
 - IV. Combining Tetramer Staining with Functional Assays 446
 - V. Conclusion 447
 - References 448

18. Use of Peptides and Peptide Libraries as T-Cell Stimulants in Flow Cytometric Studies
Georgy Cherepnev, Hans-Dieter Volk, and Florian Kern
 - I. Introduction 454
 - II. Background 455
 - III. Results/Discussion of the Literature 459
 - IV. Technical Considerations 464
 - V. Specific Applications 467
 - VI. Potential Clinical Use 471
 - VII. Protocols 473
 - References 475

19. Flow Cytometric Analysis of Human Antigen-Specific T-Cell Proliferation
Jason M. Brenchley and Daniel C. Douek
 - I. Introduction and Background 482
 - II. Methods 483
 - III. Results 484
 - IV. Critical Aspects of the Methodology 487
 - V. Pitfalls and Misinterpretation of the Data 490
 - VI. Future Directions 491
 - References 492

20. Detection of T-Cell Degranulation: CD107a and b
Michael R. Betts and Richard A. Koup
 - I. Introduction: Methods to Assess CD8+ T-Cell Function 497
 - II. Materials and Methods 500
 - III. Results 504
21. T-Cell Responses to Cancer
 Peter P. Lee
 I. Introduction 514
 II. Methods to Identify and Enumerate TAA-Specific T Cells 516
 III. Important Considerations 520
 IV. Methods to Further Analyze In Vivo Biology of Antitumor T Cells 522
 V. Novel Issues and Methods 524
 VI. Conclusion 527
 References 528

PART IV Multi-Color Immunophenotyping

22. Multicolor Flow Cytometric Analysis in SIV-Infected Rhesus Macaque
 I. Introduction 536
 II. Methods 537
 III. Flow Cytometry Instrumentation and Software 538
 IV. Instrument Setup 539
 V. Critical Aspects of the Technology 542
 VI. Application of 10-Color Analysis to SIV Infection 548
 VII. Conclusion 554
 References 555

23. Multicolor Immunophenotyping: Human Immune System Hematopoiesis
 Brent Wood
 I. Introduction 559
 II. Methodology 560
 III. Normal Immunophenotypic Patterns of Maturation 561
 IV. Abnormal Immunophenotypic Patterns of Maturation 573
 References 575
24. Multicolor Immunophenotyping: Human Mature Immune System

Stephen C. De Rosa

I. Introduction

II. Choice of Markers

III. Staining Panels: Matching Fluorochrome with Cell Marker

IV. Conclusion

References

577
578
586
592
593

25. Differential Diagnosis of T-Cell Lymphoproliferative Disorders by Flow Cytometry

Multicolor Immunophenotyping, Correlation with Morphology

Wojciech Gorcezya

I. Introduction

II. Materials

III. Methods

IV. Identification of Abnormal T-Cell Population by Flow Cytometry

V. Precursor T Lymphoblastic Lymphoma/Leukemia

VI. Peripheral (Mature/Post-thymic) Lymphoma Versus Precursor T-Lymphoblastic Lymphoma/Leukemia

VII. Thymocytes from Thymic Hyperplasia/Thymoma Versus Precursor T-Lymphoblastic Lymphoma/Leukemia

VIII. Mature T-Cell Lymphoproliferative Disorders

IX. CD117 Expression in T-Cell Lymphoproliferations

X. Blastic NK Cell Lymphoma (DC-2 Acute Leukemia)

XI. Conclusion

References

596
596
597
598
601
601
604
604
616
618
618
619

26. Isolation and Immunophenotyping of Human and Rhesus Macaque Dendritic Cells

Karin Loré

I. Introduction

II. In Vitro Differentiation of Monocyte-Derived Dendritic Cells

III. Detection and Sorting Procedures of Subsets of Dendritic Cells

IV. Culture and Activation of Dendritic Cells

References

623
625
625
635
637

27. B-Cell Immunophenotyping

Nicole Baumgarth

I. Introduction

643
28. Flow Cytometry Immunophenotypic Characteristics of Monocytic Population in Acute Monocytic Leukemia (AML-M5), Acute Myelomonocytic Leukemia (AML-M4), and Chronic Myelomonocytic Leukemia (CMML)
Wojciech Gorczyca
I. Introduction 666
II. Materials 666
III. Methods 667
IV. Acute Monocytic Leukemia 668
V. Chronic Myelomonocytic Leukemia 668
VI. Acute Myelomonocytic Leukemia 668
VII. Differential Diagnosis 670
VIII. Conclusion 676
References 676

29. Phagocyte Function
Gregor Rothe and Mariam Klouche
I. Introduction 680
II. Background 690
III. Methods 694
IV. Results 697
V. Pitfalls and Misinterpretation of the Data 698
VI. Comparison with Other Methods 700
VII. Applications and Biomedical Information 701
VIII. Future Directions 703
References 703

30. Neutralizing Antibody Quantification by Flow Cytometry
John R. Mascola
I. Introduction 709
PART VI Cytogenetics

31. Telomere Length Measurements Using Fluorescence *In Situ* Hybridization and Flow Cytometry
Gabriela M. Baerlocher and Peter M. Lansdorp

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>720</td>
</tr>
<tr>
<td>II. Background</td>
<td>725</td>
</tr>
<tr>
<td>III. Methods</td>
<td>727</td>
</tr>
<tr>
<td>IV. Results</td>
<td>739</td>
</tr>
<tr>
<td>V. Critical Aspects of Methodology</td>
<td>742</td>
</tr>
<tr>
<td>VI. Pitfalls and Misinterpretation of Data</td>
<td>744</td>
</tr>
<tr>
<td>VII. Comparison with Other Methods</td>
<td>745</td>
</tr>
<tr>
<td>VIII. Applications</td>
<td>746</td>
</tr>
<tr>
<td>IX. Future Directions</td>
<td>748</td>
</tr>
<tr>
<td>References</td>
<td>749</td>
</tr>
</tbody>
</table>

32. Detecting Copy Number Changes in Genomic DNA: MAPH and MLPA
Stefan J. White, Martijn H. Breuning, and Johan T. den Dunnen

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>751</td>
</tr>
<tr>
<td>II. Reactions</td>
<td>752</td>
</tr>
<tr>
<td>III. Analysis</td>
<td>756</td>
</tr>
<tr>
<td>IV. Applications</td>
<td>762</td>
</tr>
<tr>
<td>V. Future Possibilities</td>
<td>764</td>
</tr>
<tr>
<td>References</td>
<td>766</td>
</tr>
</tbody>
</table>

33. Genomic Array Technology
Heike Fiegler and Nigel P. Carter

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>769</td>
</tr>
<tr>
<td>II. Construction of Genomic Clone Arrays Using DOP-PCR Amplification</td>
<td>770</td>
</tr>
<tr>
<td>III. Validation of Array Performance and Data Analysis</td>
<td>771</td>
</tr>
<tr>
<td>IV. Array CGH</td>
<td>776</td>
</tr>
<tr>
<td>V. Array CGH for Cytogenetic Analyses</td>
<td>778</td>
</tr>
<tr>
<td>VI. Array Painting</td>
<td>779</td>
</tr>
</tbody>
</table>
VII. Application of Array CGH and Array Painting for Complete Cytogenetic Analyses

VIII. ChIP on Genomic Clone Arrays

IX. Conclusion

References

34. Prospects for In Situ Analyses of Individual and Complexes of DNA, RNA, and Protein Molecules with Padlock and Proximity Probes

Ulf Landegren, Mats Nilsson, Mats Gullberg, Ola Söderberg, Malin Jarvius, Chatarina Larsson, and Jonas Jarvius

I. Need for Single-Molecule In Situ Analyses
II. Problem of Specificity and Sensitivity
III. Single- or Dual-Recognition Assays
IV. Some Possible Assay Formats
V. Specific Detection of Macromolecules followed by Selective In Situ Amplification
VI. Future Directions

References

35. The Use of Subtelomeric Probes to Study Mental Retardation

Samantha J. L. Knight and Jonathan Flint

I. Introduction
II. Background
III. Methods
IV. Results
V. Critical Aspects of the Methodologies
VI. Limitations, Pitfalls, and Misinterpretation of Data
VII. Comparison with Other Methods
VIII. Applications
IX. Future Directions

References

Index

Volumes in Series