Evaluation of Enzyme Inhibitors in Drug Discovery
A Guide for Medicinal Chemists and Pharmacologists

Robert A. Copeland
Contents

Foreword xi
Preface xiii
Acknowledgments xvii

1. Why Enzymes as Drug Targets? 1
 1.1 Enzymes Are Essential for Life 2
 1.2 Enzyme Structure and Catalysis 5
 1.3 Permutations of Enzyme Structure during Catalysis 10
 1.4 Other Reasons for Studying Enzymes 14
 1.5 Summary 18
 References 19

2. Enzyme Reaction Mechanisms 21
 2.1 Initial Binding of Substrate 21
 2.2 Noncovalent Forces in Reversible Ligand Binding to Enzymes 23
 2.2.1 Electrostatic Forces 23
 2.2.2 Hydrogen Bonds 23
 2.2.3 Hydrophobic Forces 24
 2.2.4 van der Waals Forces 25
 2.3 Transformations of the Bound Substrate 25
 2.3.1 Strategies for Transition State Stabilization 27
 2.3.2 Enzyme Active Sites Are Most Complementary to the Transition State Structure 32
 2.4 Steady State Analysis of Enzyme Kinetics 34
 2.4.1 Factors Affecting the Steady State Kinetic Constants 37
 2.5 Graphical Determination of k_{cat} and K_M 40
 2.6 Reactions Involving Multiple Substrates 42
 2.6.1 Bisubstrate Reaction Mechanisms 42
 2.7 Summary 46
 References 47

3. Reversible Modes of Inhibitor Interactions with Enzymes 48
 3.1 Enzyme–Inhibitor Binding Equilibria 48
 3.2 Competitive Inhibition 51
 3.3 Noncompetitive Inhibition 56
 3.3.1 Mutual Exclusivity Studies 63
5.5.3 Buildup of Substrate and/or Diminution of Product for the Target Enzyme Should Be Observed in Cells

5.5.4 Cellular Phenotype Should Be Reversed by Cell-Permeable Product or Downstream Metabolites of the Target Enzyme Activity

5.5.5 Mutation of the Target Enzyme Should Lead to Resistance or Hypersensitivity to Inhibitors

5.6 Summary

References

6. Slow Binding Inhibitors

6.1 Determining k_{obs}: The Rate Constant for Onset of Inhibition

6.2 Mechanisms of Slow Binding Inhibition

6.3 Determination of Mechanism and Assessment of True Affinity

6.3.1 Potential Clinical Advantages of Slow Off-rate Inhibitors

6.4 Determining Inhibition Modality for Slow Binding Inhibitors

6.5 SAR for Slow Binding Inhibitors

6.6 Some Examples of Pharmacologically Interesting Slow Binding Inhibitors

6.6.1 Examples of Scheme B: Inhibitors of Zinc Peptidases and Proteases

6.6.2 Example of Scheme C: Inhibition of Dihydrofolate Reductase by Methotrexate

6.6.3 Example of Scheme C: Inhibition of Calcineurin by FKBP-Inhibitor Complexes

6.6.4 Example of Scheme C When K_{off}^* << K_{cat}: Aspartyl Protease Inhibitors

6.6.5 Example of Scheme C When k_o Is Very Small: Selective COX2 Inhibitors

6.7 Summary

References

7. Tight Binding Inhibitors

7.1 Effects of Tight Binding Inhibition Concentration–Response Data

7.2 The IC_{50} Value Depends on K_{PP} and $[E]_0$

7.3 Morrison’s Quadratic Equation for Fitting Concentration–Response Data for Tight Binding Inhibitors

7.3.1 Optimizing Conditions for K_{PP} Determination Using Morrison’s Equation

7.3.2 Limits on K_{PP} Determinations

7.3.3 Use of a Cubic Equation When Both Substrate and Inhibitor Are Tight Binding

7.4 Determining Modality for Tight Binding Enzyme Inhibitors

7.5 Tight Binding Inhibitors Often Display Slow Binding Behavior
7.6 Practical Approaches to Overcoming the Tight Binding Limit in Determining K_i 194
7.7 Enzyme-Reaction Intermediate Analogues as Examples of Tight Binding Inhibitors 197
 7.7.1 Bisubstrate Analogues 202
 7.7.2 Testing for Transition State Mimicry 203
7.8 Potential Clinical Advantages of Tight Binding Inhibitors 206
7.9 Determination of $[E_i]$ Using Tight Binding Inhibitors 209
7.10 Summary 211
References 212

8. Irreversible Enzyme Inactivators 214
 8.1 Kinetic Evaluation of Irreversible Enzyme Inactivators 215
 8.2 Affinity Labels 219
 8.2.1 Quiescent Affinity Labels 220
 8.2.2 Potential Liabilities of Affinity Labels as Drugs 224
 8.3 Mechanism-Based Inactivators 226
 8.3.1 Distinguishing Features of Mechanism-Based Inactivation 228
 8.3.2 Determination of the Partition Ratio 234
 8.3.3 Potential Clinical Advantages of Mechanism-Based Inactivators 235
 8.3.4 Examples of Mechanism-Based Inactivators as Drugs 236
 8.4 Use of Affinity Labels as Mechanistic Tools 242
 8.5 Summary 247
References 247

Appendix 1. Kinetics of Biochemical Reactions 249
 A1.1 The Law of Mass Action and Reaction Order 249
 A1.2 First-Order Reaction Kinetics 252
 A1.3 Second-Order Reaction Kinetics 255
 A1.4 Pseudo–First-Order Reaction Conditions 256
 A1.5 Approach to Equilibrium: An Example of the Kinetics of Reversible Reactions 257
References 259

Appendix 2. Derivation of the Enzyme–Ligand Binding Isotherm Equation 260
References 263

Appendix 3. Serial Dilution Schemes 264

Index 266