MOLECULAR LIGHT SCATTERING
AND OPTICAL ACTIVITY
Second edition, revised and enlarged

LAURENCE D. BARRON, F.R.S.E.
Gardiner Professor of Chemistry, University of Glasgow

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface to the first edition page xi
Preface to the second edition xv
List of symbols xviii

1 A historical review of optical activity phenomena 1
   1.1 Introduction 1
   1.2 Natural optical rotation and circular dichroism 2
   1.3 Magnetic optical rotation and circular dichroism 10
   1.4 Light scattering from optically active molecules 14
   1.5 Vibrational optical activity 17
   1.6 X-ray optical activity 21
   1.7 Magnetochiral phenomena 22
   1.8 The Kerr and Cotton–Mouton effects 23
   1.9 Symmetry and optical activity 24
      Spatial symmetry and optical activity • Inversion symmetry and
      physical laws • Inversion symmetry and optical rotation • Inversion
      symmetry and optical activity in light scattering • Motion-dependent
      enantiomorphism: true and false chirality • Symmetry violation: the
      fall of parity and time reversal invariance • Chirality and relativity •
      Chirality in two dimensions

2 Molecules in electric and magnetic fields 53
   2.1 Introduction 53
   2.2 Electromagnetic waves 54
      Maxwell’s equations • Plane monochromatic waves • Force and
      energy • The scalar and vector potentials
   2.3 Polarized light 61
      Pure polarization • Partial polarization
   2.4 Electric and magnetic multipole moments 67
Electric multipole moments • Magnetic multipole moments • Static
electric multipole fields • Static magnetic multipole fields •
Dynamic electromagnetic multipole fields

2.5 The energy of charges and currents in electric and
magnetic fields

Electric and magnetic multipole moments in static fields • Electric
and magnetic multipole moments in dynamic fields

2.6 Molecules in electric and magnetic fields

A molecule in static fields • A molecule in a radiation field • A
molecule in a radiation field at absorbing frequencies •
Kramers–Kronig relations • The dynamic molecular property tensors
in a static approximation

2.7 A molecule in a radiation field in the presence of
other perturbations

2.8 Molecular transition tensors

The Raman transition polarizability • The adiabatic approximation •
The vibrational Raman transition tensors in Placzek’s approximation •
Vibronic interactions: the Herzberg–Teller approximation

3 Molecular scattering of polarized light

3.1 Introduction

3.2 Molecular scattering of light

3.3 Radiation by induced oscillating molecular multipole moments

3.4 Polarization phenomena in transmitted light

Refraction as a consequence of light scattering • Refringent
scattering of polarized light • Simple absorption • Linear dichroism
and birefringence (the Kerr effect) • Electric field gradient-induced
birefringence: measurement of molecular electric quadrupole
moments and the problem of origin invariance • Natural optical
rotation and circular dichroism • Magnetic optical rotation and
circular dichroism • Magnetoachiral birefringence and dichroism •
Nonreciprocal (gyrotropic) birefringence • The Jones birefringence •
Electric optical rotation (electrogyration) and circular dichroism

3.5 Polarization phenomena in Rayleigh and Raman

scattered light

Nonrefringent scattering of polarized light • Symmetric scattering •
Antisymmetric scattering • Natural Rayleigh and Raman optical
activity • Magnetic Rayleigh and Raman optical activity • Electric
Rayleigh and Raman optical activity

4 Symmetry and optical activity

4.1 Introduction

4.2 Cartesian tensors
Scalars, vectors and tensors • Rotation of axes • Polar and axial
tensors • Some algebra of unit tensors • Isotropic averages of tensor
components • Principal axes

4.3 Inversion symmetry in quantum mechanics
Space inversion • Time reversal • The parity and reversality
classification of optical activity observables • Optical enantiomers,
two-state systems and parity violation • Symmetry breaking and
symmetry violation • CP violation and molecular physics

4.4 The symmetry classification of molecular
property tensors
Polar and axial, time-even and time-odd tensors • Neumann’s
principle • Time reversal and the permutation symmetry of molecular
property and transition tensors • The spatial symmetry of molecular
property tensors • Irreducible cartesian tensors • Matrix elements of
irreducible spherical tensor operators

4.5 Permutation symmetry and chirality
Chirality functions • Permutations and the symmetric group •
Chirality functions: qualitative completeness • Chirality functions:
explicit forms • Active and inactive ligand partitions: chirality
numbers • Homochirality • Chirality functions: concluding remarks

5 Natural electronic optical activity
5.1 Introduction
5.2 General aspects of natural optical rotation and
circular dichroism
The basic equations • Optical rotation and circular dichroism through
circular differential refraction • Experimental quantities • Sum rules
5.3 The generation of natural optical activity within molecules
The static coupling model • The dynamic coupling model • Exciton
coupling (the degenerate coupled oscillator model)

5.4 Illustrative examples
The carbonyl chromophore and the octant rule • The Co\(^{3+}\)
chromophore: visible, near ultraviolet and X-ray circular dichroism •
Finite helices: hexahelicene

5.5 Vibrational structure in circular dichroism spectra
Introduction • The vibronically perturbed rotational strength • The
carbonyl chromophore

6 Magnetic electronic optical activity
6.1 Introduction
6.2 General aspects of magnetic optical rotation and
circular dichroism
The basic equations • Interpretation of the Faraday A-, B- and
C-terms
6.3 Illustrative examples
Porphyrs • Charge transfer transitions in Fe(CN)$_6^{3-}$ • The influence of intramolecular perturbations on magnetic optical activity: the carbonyl chromophore

6.4 Magnetochiral birefringence and dichroism

7 Natural vibrational optical activity
7.1 Introduction
7.2 Natural vibrational optical rotation and circular dichroism
The basic equations • The fixed partial charge model • The bond dipole model • A perturbation theory of vibrational circular dichroism

7.3 Natural vibrational Raman optical activity
The basic equations • Optical activity in transmitted and scattered light • The two-group model of Rayleigh optical activity • The bond polarizability model of Raman optical activity • The bond polarizability model in forward, backward and 90° scattering

7.4 The bond dipole and bond polarizability models applied to simple chiral structures
A simple two-group structure • Methyl torsions in a hindered single-bladed propellor • Intrinsic group optical activity tensors

7.5 Coupling models
7.6 Raman optical activity of biomolecules

8 Antisymmetric scattering and magnetic Raman optical activity
8.1 Introduction
8.2 Symmetry considerations
8.3 A vibronic development of the vibrational Raman transition tensors
8.4 Antisymmetric scattering
The antisymmetric transition tensors in the zeroth-order Herzberg–Teller approximation • Resonance Rayleigh scattering in atomic sodium • Resonance Raman scattering in totally symmetric vibrations of iridium (IV) hexahalides • Antisymmetric transition tensors generated through vibronic coupling • Resonance Raman scattering in porphyrins

8.5 Magnetic Rayleigh and Raman optical activity
The basic equations • Resonance Rayleigh scattering in atomic sodium • Vibrational resonance Raman scattering in IrCl$_6^{2-}$ and CuBr$_4^{2-}$ : Spin-flip transitions and Raman electron paramagnetic resonance • Electronic resonance Raman scattering in uranocene • Resonance Raman scattering in porphyrins

References
Index