I. General Theory

A unique Jahn–Teller Mechanism of all the Symmetry Breakings in Molecular Systems and Condensed Matter

Isaac B. Bersuker

1. Introduction
3. Chemical bonding as a particular case of the Jahn–Teller effect: rigorous formulation of the JT theorem
4. Jahn–Teller induced symmetry breakings in structural phase transitions, melting, vaporization, and enantiomer formation
5. General formulations

Acknowledgements
References

Icosahedral Quarks

B. R. Judd and Edwin Lo

1. Introduction
2. Gains
3. The irreducible representation G
4. Quasispin
5. The icosahedral h shell
6. Generalizations

Acknowledgements
References
Non-Condon Correction to Franck-Condon Values of Second-order Reduction Factors: The Cubic T Term

Faten Al-Hazmi, Victor Z. Polinger, Janette L. Dunn, Colin A. Bates, Elie A. Moujaes and Michel Abou-Ghantous

1. Introduction 170
2. General background to cubic $T \otimes T$ JT systems 171
3. Definitions of second-order vibronic RFs 172
4. The basis of the FC approximation 174
5. Evaluation of the RFs $K^{(2)}_{u}(T_i \otimes T_i)$ for the $T \otimes T$ JT system using the FC approximation 174
6. Non-Condon corrections of the FC values 176
7. Discussion 181
 - Acknowledgements 181
 - References 182

Embedding of the K_{10} Graph on a Surface with Seven Cross-caps and the Icosahedral $H \otimes 2h$ Jahn–Teller Surface

Erwin Lijnen and Arnout Ceulemans

1. Introduction 184
2. The polyhedral representation 184
3. Why a polyhedral representation is useful 186
4. The interconversion paths on the linear $H \otimes (g \oplus 2h)$ JT surface 187
5. Polyhedral embedding of the interconversion graphs for the trigonal minima 189
6. Discussion and conclusions 196
 - Acknowledgements 197
 - Appendix A: Embeddings of the complement that keep the equivalence of the ten vertices 197
 - References 198

II. Molecular Systems: Hydrocarbons

H. Köppel, I. Bäldia and P. G. Szalay

1. Introduction 200
2. Theoretical framework 201
3. The multi-mode JT effect in the $\tilde{X} \tilde{2}E_{1g}$ state 204
4. Simultaneous JT and PJT interactions in the $\tilde{D} \tilde{2}E_{1u} - \tilde{E} \tilde{2}B_{2g}$ system 210
5. Concluding remarks 215
 - Acknowledgements 216
 - References 216
Symmetry Aspects of Distortivity in \(\pi \) Systems

P. W. Fowler

1. Introduction
2. The Heilbronner model
3. Counting Heilbronner modes
4. Symmetry and Heilbronner modes
5. Heilbronner modes in polyhedra
6. Heilbronner modes and the line graphs
7. When does distortion occur?
8. Distortion and aromaticity

References

Jahn–Teller Effect in Circulenes

Tohru Sato, Yasutaka Kuzumoto, Ken Tokunaga, Hideaki Tanaka and Hiroshi Imahori

1. Introduction
2. Jahn–Teller effect
3. Experimental
4. Method of calculation
5. Results and discussion
6. Summary

Acknowledgements

References

Vibronic Interactions and Jahn–Teller Effects in Charged Hydrocarbons

Takashi Kato and Kazuyuki Hirao

1. Introduction
2. Optimized structures
3. Electron–phonon coupling in the monoanions of acene- and phenanthrene-edge-type hydrocarbons
4. Possible \(T_c \)s for the monoanions of acene- and phenanthrene-edge-type hydrocarbon crystals
5. Possible \(T_c \)s for the monoanions of coronene and corannulene
6. Concluding remarks

Acknowledgements

References

The Spin Hamiltonian Effective Approach to the Vibronic Effects – Selected Cases

F. Cimpoesu, K. Hirao, N. Stanica and V. Chihaia

1. Introduction
2. The spin Hamiltonian and its generalization
3. A Jahn–Teller system modeled through generalized spin Hamiltonian: the H₃ molecule 276
5. The comparison with C₆H₆ – The vibronic perspective on resonance stabilization and aromaticity 282
6. Conclusion 286
Acknowledgements 287
References 288

III. Molecular Systems: Fullerenes

Jahn–Teller Distortions and Excitation Energies in C₆₀⁺ 289
Martin Lüders and Nicola Manini
1. Introduction 289
2. The model Hamiltonian 291
3. The adiabatic calculations 293
4. Vertical excitation energies 297
5. Non-adiabatic corrections 297
6. Discussion and conclusions 299
Acknowledgements 300
Appendix A 301
References 303

Many Electron- and Hole Terms of Molecular Ions C₆₀²⁺ 305
A. V. Nikolaev and K. H. Michel
Acknowledgements 312
References 312

Cage Structure Distortion of Fullerenes 313
Tatsuhisa Kato
References 316

Multiple Occupancy of Triply Degenerate States in Icosahedral Symmetry 319
S. S. Sookhun, C. A. Bates, J. L. Dunn and W. Diery
1. Introduction 320
2. JT interaction matrices 321
3. Adiabatic potential energy surfaces (APES) 322
4. Rotational coordinates 324
5. The states 326
6. Energy evaluations 328
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Discussion</td>
</tr>
<tr>
<td>8. Conclusion</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Vibronic-induced Shifts in the Optical Spectra of Doped Fullerenes 335
I. D. Hands, J. L. Dunn and C. A. Bates
1. Introduction 336
2. Vibronic coupling in C$_{60}$ 337
3. Experimental coupling constants 339
4. Doping effects in the optical spectra of fullerenes 341
5. Force constant models for C$_{60}$ 344
6. Charge transfer-induced mode shifts 350
7. Conclusions and discussion 350
Acknowledgements 352
References 352

IV. Molecular Systems: Main-Group and Transition Elements

A DFT Based Parameterization of the Vibronic Mixing between Two Non-degenerate Electronic States and the Application to s2-lone Pairs 355
M. Atanasov and D. Reinen
1. Introduction 356
2. A new recipe for calculating E_v, E_e and N using DFT 359
3. Computational details 360
4. Applications 360
5. Conclusions 365
Appendix 366
References 368

The Ab Initio Analytical Approach of Vibronic Quantities: Application to Inorganic Stereochemistry 369
F. Cimpoesu and K. Hira o
1. Introduction 370
2. Principle and formal background 371
4. Results and discussion 375
5. Conclusion 384
Acknowledgements 385
Appendix A 385
References 387
CONTENTS

Vibronic Interactions in High Nuclearity Clusters 389
Serguei A. Borshch

1. Introduction 389
2. Hexanuclear rhenium chalcohalide clusters 390
3. Delocalization of excitations in decatungstate cluster 395
4. Conclusions
 Acknowledgements 399
 References 399

On the Jahn–Teller Origin of the Phosphorus Molecule P4 Activation by One- and Two-Electron Reduction 401
I. Ya. Ogurtsov and V. Mirzaz

1. Introduction 402
2. Computational methods 402
3. Electronic structure of the P4 (q = 0, -1, -2) molecular systems 403
4. Discussions of the results 408
5. Conclusions
 Acknowledgements 412
 References 412

1. Introduction 414
2. The model 414
3. Matrix representation of the main interactions 415
4. Energy pattern for a d5 complex in a static model 418
5. g-Factors and TIP in the 2T2 ⊗(e + SO + V_tr) pseudo-JT vibronic problem 420
6. Concluding remarks
 Acknowledgements 428
 References 428

Pseudo-Jahn–Teller Origin of the Metastable States in Sodium Nitroprusside 429
E. Coronado, S. Klokishner, O. Reu and B. Tsukerblat

1. Introduction 429
2. The model 431
3. Ground adiabatic potential sheet 434
4. Qualitative discussion: concluding remarks
 Acknowledgements 443
 References 444
Spectral Intensities in Cubic Stoichiometric Elpasolites: The Cs₂NaSmCl₆ and Cs₂NaEuCl₆ Systems
R. Acevedo, C. Portillo, G. Navarro and T. Meruane
1. Introduction
2. Experimental section
3. Theoretical model
4. Vibronic intensity calculations
5. Summary
 Acknowledgements
 References

Jahn–Teller Effect in Laser Crystal LiCaAlF₆:Cr³⁺
C. N. Avram, Gh. E. Draganescu and N. M. Avram
1. Introduction
2. Symmetry and vibration of LiCAF crystal
3. Low-lying energy levels in static crystal field model
4. Jahn–Teller effect in the 4T₂g state
5. Conclusion
 Acknowledgements
 References

VI. Solid State

Electron Correlation and Jahn–Teller Effect in Alkali-Metal-Doped C₆₀
Shugo Suzuki, Tadahiko Chida and Kenji Nakao
1. Introduction
2. Basis of electronic structure
3. Photoemission spectrum
4. Superconductivity
5. Summary and open questions
 Acknowledgements
 References

Vibronic Renormalization of Superconductivity Gaps in a Two-Band Model of Cuprates
N. Kristoffel
Acknowledgements
References
Orbital Ordering and the Cooperative Jahn–Teller Effect in Single Crystals of the Magnetic Perovskite \(\text{La}_{718}\text{Sr}_{118}\text{MnO}_{3} \)

I. Gordon, P. Wagner, V. V. Moshchalkov, Y. Bruynseraede, L. Pinsard and A. Revcolevsch

1. Introduction
2. Experimental
3. Structure and transport properties of LSMO
4. Influence of the CJT transition on the resistivity
5. Influence of the CJT transition on the magnetization
6. Summary
 Acknowledgements
 References

Low-Temperature Phase Transition and Structure of Ordered Phase in \(\text{K}_{3}\text{H(SO}_{4}\text{)}_{2} \) (TKHS)-Family Materials

S. P. Dolin, A. A. Levin, T. Yu. Mikhailova and M. V. Solin

1. Introduction
2. Model Hamiltonian
3. Parameters \(\Omega \) and \(J_{ij} \)
4. Ground state of localized deuterons
5. Thermodynamics of the TKHS family
 Acknowledgements
 References

Cooperative Dynamical Effect in Rhombohedral \(\text{LaMnO}_{3} \)

A. E. Nikiforov and S. E. Popov

1. Introduction
2. Lattice energy calculation model
3. Results and discussion
4. Conclusion
 Acknowledgements
 References

First-order Phase Transition in \(\text{UO}_{2} \): the Interplay of the \(\text{5f}^{2} - \text{5f}^{2} \) Superexchange Interaction and Jahn–Teller Effect

V. S. Mironov, L. F. Chibotaru and A. Ceulemans

1. Introduction
2. Supercrystal interaction between \(\text{U}^{4+} \) ions in \(\text{UO}_{2} \)
3. Jahn–Teller effect for the ground \(\Gamma_{5} \) state of \(\text{U}^{4+} \) ions: calculations of vibronic coupling constants for the \(e_{g} \) and \(t_{2g} \) Jahn–Teller modes
4. Discussion: The relationship between the \(\text{5f}^{2} - \text{5f}^{2} \) superexchange interaction and Jahn–Teller effect
5. Conclusions and further outlook