Critical Phenomena in Natural Sciences

Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

Second Edition
With 102 Figures
Contents

1. Useful Notions of Probability Theory ... 1
 1.1 What Is Probability? ... 1
 1.1.1 First Intuitive Notions .. 1
 1.1.2 Objective Versus Subjective Probability 2
 1.2 Bayesian View Point .. 6
 1.2.1 Introduction ... 6
 1.2.2 Bayes’ Theorem ... 7
 1.2.3 Bayesian Explanation for Change of Belief 9
 1.2.4 Bayesian Probability and the Dutch Book 10
 1.3 Probability Density Function ... 12
 1.4 Measures of Central Tendency ... 13
 1.5 Measure of Variations from Central Tendency 14
 1.6 Moments and Characteristic Function 15
 1.7 Cumulants .. 16
 1.8 Maximum of Random Variables and Extreme Value Theory 18
 1.8.1 Maximum Value Among N Random Variables 19
 1.8.2 Stable Extreme Value Distributions 23
 1.8.3 First Heuristic Derivation of the Stable Gumbel Distribution ... 25
 1.8.4 Second Heuristic Derivation of the Stable Gumbel Distribution ... 26
 1.8.5 Practical Use and Expression of the Coefficients of the Gumbel Distribution 28
 1.8.6 The Gnedenko–Pickands–Balkema–de Haan Theorem and the pdf of Peaks-Over-Threshold ... 29

2. Sums of Random Variables, Random Walks and the Central Limit Theorem ... 33
 2.1 The Random Walk Problem ... 33
 2.1.1 Average Drift ... 34
 2.1.2 Diffusion Law ... 35
 2.1.3 Brownian Motion as Solution of a Stochastic ODE 35
 2.1.4 Fractal Structure ... 37
XVI Contents

2.1.5 Self-Affinity .. 39
2.2 Master and Diffusion (Fokker–Planck) Equations 41
 2.2.1 Simple Formulation 41
 2.2.2 General Fokker–Planck Equation 43
 2.2.3 Ito Versus Stratonovich 44
 2.2.4 Extracting Model Equations from Experimental Data 47

2.3 The Central Limit Theorem 48
 2.3.1 Convolution ... 48
 2.3.2 Statement ... 50
 2.3.3 Conditions .. 50
 2.3.4 Collective Phenomenon 51
 2.3.5 Renormalization Group Derivation 52
 2.3.6 Recursion Relation and Perturbative Analysis 55

3. Large Deviations ... 59
 3.1 Cumulant Expansion 59
 3.2 Large Deviation Theorem 60
 3.2.1 Quantification of the Deviation
 from the Central Limit Theorem 61
 3.2.2 Heuristic Derivation
 of the Large Deviation Theorem (3.9) 61
 3.2.3 Example: the Binomial Law 63
 3.2.4 Non-identically Distributed Random Variables 64

3.3 Large Deviations with Constraints
and the Boltzmann Formalism 66
 3.3.1 Frequencies Conditioned by Large Deviations 66
 3.3.2 Partition Function Formalism 68
 3.3.3 Large Deviations in the Dice Game 70
 3.3.4 Model Construction from Large Deviations 73
 3.3.5 Large Deviations in the Gutenberg–Richter Law
 and the Gamma Law 76

3.4 Extreme Deviations 78
 3.4.1 The “Democratic” Result 78
 3.4.2 Application to the Multiplication
 of Random Variables:
 a Mechanism for Stretched Exponentials 80
 3.4.3 Application to Turbulence and to Fragmentation .. 83

3.5 Large Deviations in the Sum of Variables
with Power Law Distributions 87
 3.5.1 General Case with Exponent $\mu > 2$ 87
 3.5.2 Borderline Case with Exponent $\mu = 2$ 90
4. Power Law Distributions

4.1 Stable Laws: Gaussian and Lévy Laws

4.1.1 Definition

4.1.2 The Gaussian Probability Density Function

4.1.3 The Log-Normal Law

4.1.4 The Lévy Laws

4.1.5 Truncated Lévy Laws

4.2 Power Laws

4.2.1 How Does One Tame "Wild" Distributions?

4.2.2 Multifractal Approach

4.2.3 Anomalous Diffusion of Contaminants in the Earth's Crust and the Atmosphere

4.3 Anomalous Diffusion of Contaminants

4.4 Intuitive Calculation Tools for Power Law Distributions

4.5 Fox Function, Mittag-Leffler Function and Lévy Distributions

5. Fractals and Multifractals

5.1 Fractals

5.1.1 Introduction

5.1.2 A First Canonical Example: the Triadic Cantor Set

5.1.3 How Long Is the Coast of Britain?

5.1.4 The Hausdorff Dimension

5.1.5 Examples of Natural Fractals

5.2 Multifractals

5.2.1 Definition

5.2.2 Correction Method for Finite Size Effects and Irregular Geometries

5.2.3 Origin of Multifractality and Some Exact Results

5.2.4 Generalization of Multifractality:Infinitely Divisible Cascades

5.3 Scale Invariance

5.3.1 Definition

5.3.2 Relation with Dimensional Analysis

5.4 The Multifractal Random Walk

5.4.1 A First Step: the Fractional Brownian Motion

5.4.2 Definition and Properties of the Multifractal Random Walk

5.5 Complex Fractal Dimensions and Discrete Scale Invariance

5.5.1 Definition of Discrete Scale Invariance

5.5.2 Log-Periodicity and Complex Exponents
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.3</td>
<td>Importance and Usefulness of Discrete Scale Invariance</td>
<td>159</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Scenarii Leading to Discrete Scale Invariance</td>
<td>160</td>
</tr>
<tr>
<td>6.</td>
<td>Rank-Ordering Statistics and Heavy Tails</td>
<td>163</td>
</tr>
<tr>
<td>6.1</td>
<td>Probability Distributions</td>
<td>163</td>
</tr>
<tr>
<td>6.2</td>
<td>Definition of Rank Ordering Statistics</td>
<td>164</td>
</tr>
<tr>
<td>6.3</td>
<td>Normal and Log-Normal Distributions</td>
<td>166</td>
</tr>
<tr>
<td>6.4</td>
<td>The Exponential Distribution</td>
<td>167</td>
</tr>
<tr>
<td>6.5</td>
<td>Power Law Distributions</td>
<td>170</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Maximum Likelihood Estimation</td>
<td>170</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Quantiles of Large Events</td>
<td>173</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Power Laws with a Global Constraint: “Fractal Plate Tectonics”</td>
<td>174</td>
</tr>
<tr>
<td>6.6</td>
<td>The Gamma Law</td>
<td>179</td>
</tr>
<tr>
<td>6.7</td>
<td>The Stretched Exponential Distribution</td>
<td>180</td>
</tr>
<tr>
<td>6.8</td>
<td>Maximum Likelihood and Other Estimators of Stretched Exponential Distributions</td>
<td>181</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Introduction</td>
<td>182</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Two-Parameter Stretched Exponential Distribution</td>
<td>185</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Three-Parameter Weibull Distribution</td>
<td>194</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Generalized Weibull Distributions</td>
<td>196</td>
</tr>
<tr>
<td>7.</td>
<td>Statistical Mechanics: Probabilistic Point of View and the Concept of “Temperature”</td>
<td>199</td>
</tr>
<tr>
<td>7.1</td>
<td>Statistical Derivation of the Concept of Temperature</td>
<td>200</td>
</tr>
<tr>
<td>7.2</td>
<td>Statistical Thermodynamics</td>
<td>202</td>
</tr>
<tr>
<td>7.3</td>
<td>Statistical Mechanics as Probability Theory with Constraints</td>
<td>203</td>
</tr>
<tr>
<td>7.3.1</td>
<td>General Formulation</td>
<td>203</td>
</tr>
<tr>
<td>7.3.2</td>
<td>First Law of Thermodynamics</td>
<td>206</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Thermodynamic Potentials</td>
<td>207</td>
</tr>
<tr>
<td>7.4</td>
<td>Does the Concept of Temperature Apply to Non-thermal Systems?</td>
<td>208</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Formulation of the Problem</td>
<td>208</td>
</tr>
<tr>
<td>7.4.2</td>
<td>A General Modeling Strategy</td>
<td>210</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Discriminating Tests</td>
<td>211</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Stationary Distribution with External Noise</td>
<td>213</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Effective Temperature Generated by Chaotic Dynamics</td>
<td>214</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Principle of Least Action for Out-Of-Equilibrium Systems</td>
<td>218</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Superstatistics</td>
<td>219</td>
</tr>
</tbody>
</table>
8. Long-Range Correlations

8.1 Criterion for the Relevance of Correlations 223
8.2 Statistical Interpretation 226
8.3 An Application: Super-Diffusion in a Layered Fluid with Random Velocities 228
8.4 Advanced Results on Correlations 229
8.4.1 Correlation and Dependence 229
8.4.2 Statistical Time Reversal Symmetry 231
8.4.3 Fractional Derivation and Long-Time Correlations 236

9. Phase Transitions: Critical Phenomena and First-Order Transitions 241

9.1 Definition 241
9.2 Spin Models at Their Critical Points 242
9.2.1 Definition of the Spin Model 242
9.2.2 Critical Behavior 245
9.2.3 Long-Range Correlations of Spin Models at their Critical Points 246
9.3 First-Order Versus Critical Transitions 248
9.3.1 Definition and Basic Properties 248
9.3.2 Dynamical Landau–Ginzburg Formulation 250
9.3.3 The Scaling Hypothesis: Dynamical Length Scales for Ordering 253

10. Transitions, Bifurcations and Precursors 255

10.1 “Supercritical” Bifurcation 256
10.2 Critical Precursory Fluctuations 258
10.3 “Subcritical” Bifurcation 262
10.4 Scaling and Precursors Near Spinodals 264
10.5 Selection of an Attractor in the Absence of a Potential 265

11. The Renormalization Group 267

11.1 General Framework 267
11.2 An Explicit Example: Spins on a Hierarchical Network 269
11.2.1 Renormalization Group Calculation 269
11.2.2 Fixed Points, Stable Phases and Critical Points 273
11.2.3 Singularities and Critical Exponents 275
11.2.4 Complex Exponents and Log-Periodic Corrections to Scaling 276
11.2.5 “Weierstrass-Type Functions” from Discrete Renormalization Group Equations 279
11.3 Criticality and the Renormalization Group on Euclidean Systems 283
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>A Novel Application to the Construction of Functional Approximants</td>
<td>287</td>
</tr>
<tr>
<td>11.4.1</td>
<td>General Concepts</td>
<td>287</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Self-Similar Approximants</td>
<td>288</td>
</tr>
<tr>
<td>11.5</td>
<td>Towards a Hierarchical View of the World</td>
<td>291</td>
</tr>
<tr>
<td>12.</td>
<td>The Percolation Model</td>
<td>293</td>
</tr>
<tr>
<td>12.1</td>
<td>Percolation as a Model of Cracking</td>
<td>293</td>
</tr>
<tr>
<td>12.2</td>
<td>Effective Medium Theory and Percolation</td>
<td>296</td>
</tr>
<tr>
<td>12.3</td>
<td>Renormalization Group Approach to Percolation and Generalizations</td>
<td>298</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Cell-to-Site Transformation</td>
<td>299</td>
</tr>
<tr>
<td>12.3.2</td>
<td>A Word of Caution on Real Space Renormalization Group Techniques</td>
<td>301</td>
</tr>
<tr>
<td>12.3.3</td>
<td>The Percolation Model on the Hierarchical Diamond Lattice</td>
<td>303</td>
</tr>
<tr>
<td>12.4</td>
<td>Directed Percolation</td>
<td>304</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Definitions</td>
<td>304</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Universality Class</td>
<td>306</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Field Theory: Stochastic Partial Differential Equation with Multiplicative Noise</td>
<td>308</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Self-Organized Formulation of Directed Percolation and Scaling Laws</td>
<td>309</td>
</tr>
<tr>
<td>13.</td>
<td>Rupture Models</td>
<td>313</td>
</tr>
<tr>
<td>13.1</td>
<td>The Branching Model</td>
<td>314</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Mean Field Version or Branching on the Bethe Lattice</td>
<td>314</td>
</tr>
<tr>
<td>13.1.2</td>
<td>A Branching–Aggregation Model Automatically Functioning at Its Critical Point</td>
<td>316</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Generalization of Critical Branching Models</td>
<td>317</td>
</tr>
<tr>
<td>13.2</td>
<td>Fiber Bundle Models and the Effects of Stress Redistribution</td>
<td>318</td>
</tr>
<tr>
<td>13.2.1</td>
<td>One-Dimensional System of Fibers Associated in Series</td>
<td>318</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Democratic Fiber Bundle Model (Daniels, 1945)</td>
<td>320</td>
</tr>
<tr>
<td>13.3</td>
<td>Hierarchical Model</td>
<td>323</td>
</tr>
<tr>
<td>13.3.1</td>
<td>The Simplest Hierarchical Model of Rupture</td>
<td>323</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Quasi-Static Hierarchical Fiber Rupture Model</td>
<td>326</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Hierarchical Fiber Rupture Model with Time-Dependence</td>
<td>328</td>
</tr>
<tr>
<td>13.4</td>
<td>Quasi-Static Models in Euclidean Spaces</td>
<td>330</td>
</tr>
<tr>
<td>13.5</td>
<td>A Dynamical Model of Rupture Without Elasto-Dynamics: the "Thermal Fuse Model"</td>
<td>335</td>
</tr>
</tbody>
</table>
13.6 Time-to-Failure and Rupture Criticality
13.6.1 Critical Time-to-Failure Analysis
13.6.2 Time-to-Failure Behavior in the Dieterich Friction Law

14. Mechanisms for Power Laws
14.1 Temporal Copernican Principle
14.2 Change of Variable
14.2.1 Power Law Change of Variable Close to the Origin
14.2.2 Combination of Exponentials
14.3 Maximization of the Generalized Tsallis Entropy
14.4 Superposition of Distributions
14.4.1 Power Law Distribution of Widths
14.4.2 Sum of Stretched Exponentials (Chap. 3)
14.4.3 Double Pareto Distribution by Superposition of Log-Normal pdf’s
14.5 Random Walks: Distribution of Return Times to the Origin
14.6 Sweeping of a Control Parameter Towards an Instability
14.7 Growth with Preferential Attachment
14.8 Multiplicative Noise with Constraints
14.8.1 Definition of the Process
14.8.2 The Kesten Multiplicative Stochastic Process
14.8.3 Random Walk Analogy
14.8.4 Exact Derivation, Generalization and Applications
14.9 The “Coherent-Noise” Mechanism
14.10 Avalanches in Hysteretic Loops and First-Order Transitions with Randomness
14.11 “Highly Optimized Tolerant” (HOT) Systems
14.11.1 Mechanism for the Power Law Distribution of Fire Sizes
14.11.2 “Constrained Optimization with Limited Deviations” (COLD)
14.11.3 HOT versus Percolation

15. Self-Organized Criticality
15.1 What Is Self-Organized Criticality?
15.1.1 Introduction
15.1.2 Definition
15.2 Sandpile Models
15.2.1 Generalities
15.2.2 The Abelian Sandpile
15.3 Threshold Dynamics
15.3.1 Generalization .. 402
15.3.2 Illustration of Self-Organized Criticality
 Within the Earth's Crust 404
15.4 Scenarios for Self-Organized Criticality 406
 15.4.1 Generalities 406
 15.4.2 Nonlinear Feedback of the "Order Parameter"
 onto the "Control Parameter" 407
 15.4.3 Generic Scale Invariance 409
 15.4.4 Mapping onto a Critical Point 414
 15.4.5 Mapping to Contact Processes 422
 15.4.6 Critical Desynchronization 424
 15.4.7 Extremal Dynamics 427
 15.4.8 Dynamical System Theory of Self-Organized Criti-
 cality .. 435
15.5 Tests of Self-Organized Criticality in Complex Systems:
 the Example of the Earth's Crust 438

16. Introduction to the Physics of Random Systems 441
 16.1 Generalities 441
 16.2 The Random Energy Model 445
 16.3 Non-Self-Averaging Properties 449
 16.3.1 Definitions 449
 16.3.2 Fragmentation Models 451

17. Randomness and Long-Range Laplacian Interactions 457
 17.1 Lévy Distributions from Random Distributions of Sources
 with Long-Range Interactions 457
 17.1.1 Holtsmark's Gravitational Force Distribution 457
 17.1.2 Generalization to Other Fields
 (Electric, Elastic, Hydrodynamics) 461
 17.2 Long-Range Field Fluctuations Due to Irregular Arrays
 of Sources at Boundaries 463
 17.2.1 Problem and Main Results 463
 17.2.2 Calculation Methods 464
 17.2.3 Applications 471

References ... 477

Index ... 525