CONTENTS

Preface to the Second Edition
Preface to the First Edition

1 Introduction
 1.1 Colloids, 1
 1.2 Macromolecules, 3
 1.2.1 Synthetic Polymers, 4
 1.2.2 Biological Polymers, 7
 1.3 Macromolecular Science, 17
 References, 17

2 Syntheses of Macromolecular Compounds
 2.1 Radical Polymerization, 19
 2.1.1 Complications, 21
 2.1.2 Methods of Free-Radical Polymerization, 23
 2.1.3 Some Well-Known Overall Reactions of
 Addition Polymers, 23
 2.2 Ionic Polymerization, 25
 2.2.1 Anionic Polymerization, 25
 2.2.2 Cationic Polymerization, 27
 2.2.3 Living Polymers, 27
 2.3 Coordination Polymerization, 30
 2.4 Stepwise Polymerization, 32
5 Chain Configurations

5.1 Preliminary Descriptions of a Polymer Chain, 97
5.2 Random Walk and the Markov Process, 98
 5.2.1 Random Walk, 99
 5.2.2 Markov Chain, 101
5.3 Random-Flight Chains, 103
5.4 Wormlike Chains, 105
5.5 Flory's Mean-Field Theory, 106
5.6 Perturbation Theory, 107
 5.6.1 First-Order Perturbation Theory, 108
 5.6.2 Cluster Expansion Method, 108
5.7 Chain Crossover and Chain Entanglement, 109
 5.7.1 Concentration Effect, 109
 5.7.2 Temperature Effect, 114
 5.7.3 Tube Theory (Reptation Theory), 116
 5.7.4 Images of Individual Polymer Chains, 118
5.8 Scaling and Universality, 119
Appendix A Scaling Concepts, 120
Appendix B Correlation Function, 121
References, 123
Problems, 124

6 Liquid Crystals

6.1 Mesogens, 128
6.2 Polymeric Liquid Crystals, 130
 6.2.1 Low-Molecular Weight Liquid Crystals, 131
 6.2.2 Main-Chain Liquid-Crystalline Polymers, 132
 6.2.3 Side-Chain Liquid-Crystalline Polymers, 132
 6.2.4 Segmented-Chain Liquid-Crystalline Polymers, 133
6.3 Shapes of Mesogens, 133
6.4 Liquid-Crystal Phases, 134
 6.4.1 Mesophases in General, 134
 6.4.2 Nematic Phase, 135
 6.4.3 Smectic Phase, 135
 6.4.3.1 Smectic A and C, 136
 6.4.4 Compounds Representing Some Mesophases, 136
 6.4.5 Shape and Phase, 137
 6.4.6 Decreasing Order and ΔH of Phase Transition, 138
6.5 Thermotropic and Lyotropic Liquid Crystals, 138
6.6 Kerr Effect, 140
6.7 Theories of Liquid-Crystalline Ordering, 141
 6.7.1 Rigid-Rod Model, 141
 6.7.2 Lattice Model, 142
 6.7.3 De Genne's Fluctuation Theory, 144
CONTENTS

6.8 Current Industrial Applications of Liquid Crystals, 145
 6.8.1 Liquid Crystals Displays, 146
 6.8.2 Electronic Devices, 147
References, 149

7 Rubber Elasticity
 7.1 Rubber and Rubberlike Materials, 150
 7.2 Network Structure, 151
 7.3 Natural Rubber and Synthetic Rubber, 152
 7.4 Thermodynamics of Rubber, 154
 7.5 Statistical Theory of Rubber Elasticity, 158
 7.6 Gels, 162
References, 163
Problems, 164

8 Viscosity and Viscoelasticity
 8.1 Viscosity, 165
 8.1.1 Capillary Viscometers, 166
 8.1.2 Intrinsic Viscosity, 170
 8.1.3 Treatment of Intrinsic Viscosity Data, 172
 8.1.4 Stokes' Law, 176
 8.1.5 Theories in Relation to Intrinsic Viscosity of Flexible Chains, 176
 8.1.6 Chain Entanglement, 179
 8.1.7 Biological Polymers (Rigid Polymers, Inflexible Chains), 181
 8.2 Viscoelasticity, 184
 8.2.1 Rouse Theory, 187
 8.2.2 Zimm Theory, 190
References, 192
Problems, 193

9 Osmotic Pressure
 9.1 Osmometers, 199
 9.2 Determination of Molecular Weight and Second Virial Coefficient, 199
 9.3 Theories of Osmotic Pressure and Osmotic Second Virial Coefficient, 202
 9.3.1 McMillan–Mayer Theory, 203
 9.3.2 Flory Theory, 204
 9.3.3 Flory–Krigbaum Theory, 205
 9.3.4 Kurata–Yamakawa Theory, 207
 9.3.5 des Cloizeaux–de Gennes Scaling Theory, 209
 9.3.6 Scatchard’s Equation for Macro Ions, 213
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Diffusion</td>
<td>223</td>
</tr>
<tr>
<td>10.1 Translational Diffusion</td>
<td>223</td>
</tr>
<tr>
<td>10.1.1 Fick's First and Second Laws</td>
<td>223</td>
</tr>
<tr>
<td>10.1.2 Solution to Continuity Equation</td>
<td>224</td>
</tr>
<tr>
<td>10.2 Physical Interpretation of Diffusion</td>
<td>226</td>
</tr>
<tr>
<td>10.3 Size, Shape, and Molecular Weight Determinations</td>
<td>229</td>
</tr>
<tr>
<td>10.3.1 Size</td>
<td>229</td>
</tr>
<tr>
<td>10.3.2 Shape</td>
<td>230</td>
</tr>
<tr>
<td>10.3.3 Molecular Weight</td>
<td>231</td>
</tr>
<tr>
<td>10.4 Concentration Dependence of Diffusion Coefficient</td>
<td>231</td>
</tr>
<tr>
<td>10.5 Scaling Relation for Translational Diffusion Coefficient</td>
<td>233</td>
</tr>
<tr>
<td>10.6 Measurements of Translational Diffusion Coefficient</td>
<td>234</td>
</tr>
<tr>
<td>10.6.1 Measurement Based on Fick's First Law</td>
<td>234</td>
</tr>
<tr>
<td>10.6.2 Measurement Based on Fick's Second Law</td>
<td>235</td>
</tr>
<tr>
<td>10.7 Rotational Diffusion</td>
<td>237</td>
</tr>
<tr>
<td>10.7.1 Flow Birefringence</td>
<td>239</td>
</tr>
<tr>
<td>10.7.2 Fluorescence Depolarization</td>
<td>239</td>
</tr>
<tr>
<td>References</td>
<td>240</td>
</tr>
<tr>
<td>Problems</td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Sedimentation</td>
<td>243</td>
</tr>
<tr>
<td>11.1 Apparatus</td>
<td>244</td>
</tr>
<tr>
<td>11.2 Sedimentation Velocity</td>
<td>246</td>
</tr>
<tr>
<td>11.2.1 Measurement of Sedimentation Coefficients: Moving-Boundary Method</td>
<td>246</td>
</tr>
<tr>
<td>11.2.2 Svedberg Equation</td>
<td>249</td>
</tr>
<tr>
<td>11.2.3 Application of Sedimentation Coefficient</td>
<td>249</td>
</tr>
<tr>
<td>11.3 Sedimentation Equilibrium</td>
<td>250</td>
</tr>
<tr>
<td>11.3.1 Archibald Method</td>
<td>251</td>
</tr>
<tr>
<td>11.3.2 Van Holde–Baldwin (Low-Speed) Method</td>
<td>254</td>
</tr>
<tr>
<td>11.3.3 Yphantis (High-Speed) Method</td>
<td>256</td>
</tr>
<tr>
<td>11.3.4 Absorption System</td>
<td>258</td>
</tr>
<tr>
<td>11.4 Density Gradient Sedimentation Equilibrium</td>
<td>259</td>
</tr>
<tr>
<td>11.5 Scaling Theory</td>
<td>260</td>
</tr>
</tbody>
</table>
12 Optical Rotatory Dispersion and Circular Dichroism

12.1 Polarized Light, 267
12.2 Optical Rotatory Dispersion, 267
12.3 Circular Dichroism, 272
12.4 Cotton Effect, 275
12.5 Correlation Between ORD and CD, 277
12.6 Comparison of ORD and CD, 280
References, 281
Problems, 281

13 High-Performance Liquid Chromatography and Electrophoresis

13.1 High-Performance Liquid Chromatography, 284
13.1.1 Chromatographic Terms and Parameters, 284
13.1.2 Theory of Chromatography, 289
13.1.3 Types of HPLC, 291
13.2 Electrophoresis, 300
13.2.1 Basic Theory, 300
13.2.2 General Techniques of Modern Electrophoresis, 305
13.2.3 Agarose Gel Electrophoresis and Polyacrylamide Gel Electrophoresis, 307
13.2.4 Southern Blot, Northern Blot, and Western Blot, 309
13.2.5 Sequencing DNA Fragments, 310
13.2.6 Isoelectric Focusing and Isotachophoresis, 310
13.3 Field-Flow Fractionation, 314
References, 317
Problems, 318

14 Light Scattering

14.1 Rayleigh Scattering, 320
14.2 Fluctuation Theory (Debye), 324
14.3 Determination of Molecular Weight and Molecular Interaction, 329
14.3.1 Two-Component Systems, 329
14.3.2 Multicomponent Systems, 329
14.3.3 Copolymers, 331
14.3.4 Correction of Anisotropy and Depolarization of Scattered Light, 333
14.4 Internal Interference, 333
14.5 Determination of Molecular Weight and Radius of Gyration of the Zimm Plot, 337
Appendix Experimental Techniques of the Zimm Plot, 341
15 Fourier Series

15.1 Preliminaries, 348
15.2 Fourier Series, 350
 15.2.1 Basic Fourier Series, 350
 15.2.2 Fourier Sine Series, 352
 15.2.3 Fourier Cosine Series, 352
 15.2.4 Complex Fourier Series, 353
 15.2.5 Other Forms of Fourier Series, 353
15.3 Conversion of Infinite Series into Integrals, 354
15.4 Fourier Integrals, 354
15.5 Fourier Transforms, 356
 15.5.1 Fourier Transform Pairs, 356
15.6 Convolution, 359
 15.6.1 Definition, 359
 15.6.2 Convolution Theorem, 361
 15.6.3 Convolution and Fourier Theory: Power Theorem, 361
15.7 Extension of Fourier Series and Fourier Transform, 362
 15.7.1 Lorentz Line Shape, 362
 15.7.2 Correlation Function, 363
15.8 Discrete Fourier Transform, 364
 15.8.1 Discrete and Inverse Discrete Fourier Transform, 364
 15.8.2 Application of DFT, 365
 15.8.3 Fast Fourier Transform, 366

Appendix, 367
References, 368
Problems, 369

16 Small-Angle X-Ray Scattering, Neutron Scattering, and Laser Light Scattering

16.1 Small-Angle X-ray Scattering, 371
 16.1.1 Apparatus, 372
 16.1.2 Guinier Plot, 373
 16.1.3 Correlation Function, 375
 16.1.4 On Size and Shape of Proteins, 377
16.2 Small-Angle Neutron Scattering, 381
 16.2.1 Six Types of Neutron Scattering, 381
 16.2.2 Theory, 382
 16.2.3 Dynamics of a Polymer Solution, 383
 16.2.4 Coherently Elastic Neutron Scattering, 384
 16.2.5 Comparison of Small-Angle Neutron Scattering with Light Scattering, 384
16.2.6 Contrast Factor, 386
16.2.7 Lorentzian Shape, 388
16.2.8 Neutron Spectroscopy, 388
16.3 Laser Light Scattering, 389
16.3.1 Laser Light-Scattering Experiment, 389
16.3.2 Autocorrelation and Power Spectrum, 390
16.3.3 Measurement of Diffusion Coefficient in General, 391
16.3.4 Application to Study of Polymers in Semidilute Solutions, 393
16.3.4.1 Measurement of Lag Times, 393
16.3.4.2 Forced Rayleigh Scattering, 394
16.3.4.3 Linewidth Analysis, 394
References, 395
Problems, 396

17 Electronic and Infrared Spectroscopy

17.1 Ultraviolet (and Visible) Absorption Spectra, 400
17.1.1 Lambert–Beer Law, 402
17.1.2 Terminology, 403
17.1.3 Synthetic Polymers, 405
17.1.4 Proteins, 406
17.1.5 Nucleic Acids, 409

17.2 Fluorescence Spectroscopy, 412
17.2.1 Fluorescence Phenomena, 412
17.2.2 Emission and Excitation Spectra, 413
17.2.3 Quenching, 413
17.2.4 Energy Transfer, 416
17.2.5 Polarization and Depolarization, 418

17.3 Infrared Spectroscopy, 420
17.3.1 Basic Theory, 420
17.3.2 Absorption Bands: Stretching and Bending, 421
17.3.3 Infrared Spectroscopy of Synthetic Polymers, 424
17.3.4 Biological Polymers, 427
17.3.5 Fourier Transform Infrared Spectroscopy, 428

References, 430
Problems, 432

18 Protein Molecules

18.1 Protein Sequence and Structure, 436
18.1.1 Sequence, 436
18.1.2 Secondary Structure, 437
18.1.2.1 α-Helix and β-Sheet, 437
18.1.2.2 Classification of Proteins, 439
18.1.2.3 Torsion Angles, 440
18.1.3 Tertiary Structure, 441
18.1.4 Quaternary Structure, 441
18.2 Protein Structure Representations, 441
 18.2.1 Representation Symbols, 441
 18.2.2 Representations of Whole Molecule, 442
18.3 Protein Folding and Refolding, 444
 18.3.1 Computer Simulation, 445
 18.3.2 Homolog Modeling, 447
 18.3.3 De Novo Prediction, 447
18.4 Protein Misfolding, 448
 18.4.1 Biological Factor: Chaperones, 448
 18.4.2 Chemical Factor: Intra- and Intermolecular Interactions, 449
 18.4.3 Brain Diseases, 450
18.5 Genomics, Proteomics, and Bioinformatics, 451
18.6 Ribosomes: Site and Function of Protein Synthesis, 452

References, 454

19 Nuclear Magnetic Resonance

19.1 General Principles, 455
 19.1.1 Magnetic Field and Magnetic Moment, 455
 19.1.2 Magnetic Properties of Nuclei, 456
 19.1.3 Resonance, 458
 19.1.4 Nuclear Magnetic Resonance, 460
19.2 Chemical Shift (δ) and Spin–Spin Coupling Constant (J), 461
19.3 Relaxation Processes, 466
 19.3.1 Spin–Lattice Relaxation and Spin–Spin Relaxation, 467
 19.3.2 Nuclear Quadrupole Relaxation and Overhauser Effect, 469
19.4 NMR Spectroscopy, 470
 19.4.1 Pulse Fourier Transform Method, 471
 19.4.1.1 Rotating Frame of Reference, 471
 19.4.1.2 The 90° Pulse, 471
 19.4.2 One-Dimensional NMR, 472
 19.4.3 Two-Dimensional NMR, 473
19.5 Magnetic Resonance Imaging, 475
19.6 NMR Spectra of Macromolecules, 477
 19.6.1 Poly(methyl methacrylate), 477
 19.6.2 Polypropylene, 481
 19.6.3 Deuterium NMR Spectra of Chain Mobility in Polyethylene, 482
 19.6.4 Two-Dimensional NMR Spectra of Poly-γ-benzyl-l-glutamate, 485
19.7 Advances in NMR Since 1994, 487
 19.7.1 Apparatus, 487
 19.7.2 Techniques, 487
 19.7.2.1 Computer-Aided Experiments, 487
 19.7.2.2 Modeling of Chemical Shift, 488
 19.7.2.3 Protein Structure Determination, 489
19.7.4 Increasing Molecular Weight of Proteins for NMR study, 491

19.8 Two Examples of Protein NMR, 491
 19.8.1 A Membrane Protein, 493
 19.8.2 A Brain Protein: Prion, 494

References, 494
Problems, 495

20 X-Ray Crystallography

20.1 X-Ray Diffraction, 497
20.2 Crystals, 498
 20.2.1 Miller Indices, hkl, 498
 20.2.2 Unit Cells or Crystal Systems, 502
 20.2.3 Crystal Drawing, 503

20.3 Symmetry in Crystals, 504
 20.3.1 Bravais Lattices, 505
 20.3.2 Point Group and Space Group, 506
 20.3.2.1 Point Groups, 507
 20.3.2.2 Interpretation of Stereogram, 509
 20.3.2.3 Space Groups, 512

20.4 Fourier Synthesis, 515
 20.4.1 Atomic Scattering Factor, 515
 20.4.2 Structure Factor, 515
 20.4.3 Fourier Synthesis of Electron Density, 516

20.5 Phase Problem, 517
 20.5.1 Patterson Synthesis, 517
 20.5.2 Direct Method (Karle–Hauptmann Approach), 518

20.6 Refinement, 519

20.7 Crystal Structure of Macromolecules, 520
 20.7.1 Synthetic Polymers, 520
 20.7.2 Proteins, 523
 20.7.3 DNA, 523

20.8 Advances in X-Ray Crystallography Since 1994, 525
 20.8.1 X-Ray Sources, 525
 20.8.2 New Instruments, 526
 20.8.3 Structures of Proteins, 526
 20.8.3.1 Comparison of X-Ray Crystallography with NMR Spectroscopy, 527
 20.8.4 Protein Examples: Polymerase and Anthrax, 528

Appendix Neutron Diffraction, 530
References, 532
Problems, 533

Author Index 535
Subject Index 543