Contents

List of Contributors ... v
Preface ... xi
Acknowledgments ... xiii

Section I. Perspectives
1. Innate versus learned movements—a false dichotomy?
 S. Grillner and P. Wallén (Stockholm, Sweden) 3

2. Why and how are posture and movement coordinated?
 J. Massion, A. Alexandrov and A. Frolov (Aix-en-Provence, France and Moscow, Russia) 13

3. Motor coordination can be fully understood only by studying complex movements
 P.J. Cordo and V.S. Gurfinkel (Portland, OR, USA) 29

4. The emotional brain: neural correlates of cat sexual behavior and human male ejaculation
 G. Holstege and J.R. Georgiadis (Groningen, The Netherlands) 39

Section II. Spinal cord and brainstem: developmental and comparative issues
5. Developmental changes in rhythmic spinal neuronal activity in the rat fetus
 N. Kudo, H. Nishimaru and K. Nakayama (Tsukuba, Japan) 49

6. The maturation of locomotor networks
 F. Clarac, F. Brocard and L. Vinay (Marseille, France) 57

7. Reflections on respiratory rhythm generation
 K. Ezure (Tokyo, Japan) .. 67
Section III. Spinal cord and brainstem: motoneurons, pattern generation and sensory feedback

8. Key mechanisms for setting the input–output gain across the motoneuron pool
 H. Hultborn, R.B. Brownstone, T.I. Toth and J.-P. Gossard
 (Copenhagen, Denmark, Halifax, NS and Montreal, QC, Canada and Cardiff, UK) .. 77

9. Rhythm generation for food-ingestive movements
 Y. Nakamura, N. Katakura, M. Nakajima and J. Liu
 (Ichihara and Tokyo, Japan) .. 97

10. Do respiratory neurons control female receptive behavior: a suggested role for a medullary central pattern generator?
 P.A. Kirkwood and T.W. Ford (London, UK) 105

11. The central pattern generator for forelimb locomotion in the cat
 T. Yamaguchi (Yamagata, Japan) 115

12. Generating the walking gait: role of sensory feedback
 K.G. Pearson (Edmonton, AB, Canada) 123

Section IV. Spinal cord and brainstem: adaptive mechanisms

13. Cellular transplants: steps toward restoration of function in spinal injured animals
 M. Murray (Philadelphia, PA, USA) 133

14. Neurotrophic effects on dorsal root regeneration into the spinal cord
 A. Tessler (Philadelphia, PA, USA) 147

15. Effects of an embryonic repair graft on recovery from spinal cord injury
 S. Kawaguchi, T. Iseda and T. Nishio (Kyoto, Japan) 155

16. Determinants of locomotor recovery after spinal injury in the cat
 S. Rossignol, L. Bouyer, C. Langlet, D. Barthélemy, C. Chau,
 N. Giroux, E. Brustein, J. Marcoux, H. Leblond and
 T.A. Reader (Montreal, QC, Canada) 163

Section V. Biomechanical and imaging approaches in movement neuroscience

17. Trunk movements and EMG activity in the cat: level versus upslope walking
 N. Wada and K. Kanda (Yamaguchi and Tokyo, Japan) 175

18. Biomechanical constraints in hindlimb joints during the quadrupedal versus bipedal locomotion of *M. fuscata*
 K. Nakajima, F. Mori, C. Takasu, M. Mori, K. Matsuyama and
 S. Mori (Osaka, Okazaki and Sapporo, Japan) 183
19. Reactive and anticipatory control of posture and bipedal locomotion in a nonhuman primate
 F. Mori, K. Nakajima, A. Tachibana, C. Takasu, M. Mori,
 T. Tsujimoto, H. Tsukada and S. Mori (Okazaki and
 Hamakata, Japan) .. 191

20. Neural control mechanisms for normal versus Parkinsonian gait
 H. Shibasaki, H. Fukuyama and T. Hanakawa
 (Kyoto, Japan) .. 199

21. Multijoint movement control: the importance of interactive torques
 C.J. Ketcham, N.V. Dounskaia and G.E. Stelmach
 (Tempe, AZ, USA) .. 207

Section VI. Descending command issues

22. How the mesencephalic locomotor region recruits hindbrain neurons
 I. Kagan and M.L. Shik (Tel Aviv and Haifa, Israel) 221

23. Role of basal ganglia–brainstem systems in the control of postural muscle
 tone and locomotion
 K. Takakusaki, J. Oohinata-Sugimoto, K. Saitoh and
 T. Habaguchi (Asahikawa, Japan) 231

24. Locomotor role of the corticoreticular–reticulospinal–spinal interneuronal
 system
 K. Matsuyama, F. Mori, K. Nakajima, T. Drew, M. Aoki and
 S. Mori (Sapporo and Okazaki, Japan and Montreal,
 QC, Canada) .. 239

25. Cortical and brainstem control of locomotion
 T. Drew, S. Prentice and B. Schepens (Montreal, QC and
 Waterloo, ON, Canada and Louvain-La-Neuve, Belgium) 251

26. Direct and indirect pathways for corticospinal control of upper limb motoneurons
 in the primate
 R.N. Lemon, P.A. Kirkwood, M.A. Maier, K. Nakajima and
 P. Nathan (London, UK, Paris, France and Osaka, Japan) 263

Section VII. Supraspinal sensorimotor interactions

27. Arousal mechanisms related to posture and locomotion: l. Descending
 modulation
 E. Garcia-Rill, Y. Homma and R.D. Skinner
 (Little Rock, AR, USA) .. 283
28. Arousal mechanisms related to posture and locomotion: 2. Ascending modulation
R.D. Skinner, Y. Homma and E. Garcia-Rill (Little Rock, AR, USA) .. 291

29. Switching between cortical and subcortical sensorimotor pathways
T. Isa and Y. Kobayashi (Okazaki, Japan) 299

Section VIII. Cerebellar interactions and control mechanisms

30. Cerebellar activation of cortical motor regions: comparisons across mammals
T. Yamamoto, Y. Nishimura, T. Matsuura, H. Shibuya, M. Lin and T. Asahara (Tsu, Japan) 309

31. Task-dependent role of the cerebellum in motor learning
J.R. Bloedel (Ames, IA, USA) ... 319

32. Role of the cerebellum in eyelink conditioning
V. Bracha (Ames, IA, USA) ... 331

33. Integration of multiple motor segments for the elaboration of locomotion: role of the fastigial nucleus of the cerebellum
S. Mori, K. Nakajima, F. Mori and K. Matusyama (Okazaki, Japan) 341

34. Role of the cerebellum in the control and adaptation of gait in health and disease
W.T. Thach and A.J. Bastian (St. Louis, MO and Baltimore, MD, USA) .. 353

Section IX. Eye–head–neck coordination

35. Current approaches and future directions to understanding control of head movement
B.W. Peterson (Chicago, IL, USA) ... 369

36. The neural control of orienting: role of multiple-branching reticulospinal neurons
S. Sasaki, K. Yoshimura and K. Naito (Tokyo, Japan) 383

37. Role of the frontal eye fields in smooth-gaze tracking
K. Fukushima, T. Yamanobe, Y. Shinmei, J. Fukushima and S. Kurkin (Sapporo, Japan) 391

38. Role of cross-striolar and commissural inhibition in the vestibulocollic reflex
Y. Uchino (Tokyo, Japan) .. 403

39. Functional synergies among neck muscles revealed by branching patterns of single long descending motor-tract axons
Y. Sugiuchi, S. Kakei, Y. Izawa and Y. Shinoda (Tokyo, Japan) 411
40. Control of orienting movements: role of multiple tectal projections to the lower brainstem
 A. Grantyn, A.K. Moschovakis and T. Kitama (Paris, France, Heraklion, Greece and Yamanashi, Japan) 423

41. Pedunculo-pontine control of visually guided saccades
 Y. Kobayashi, Y. Inoue and T. Isa (Okazaki, Japan) 439

Section X. Higher control mechanisms: basal ganglia, sensorimotor cortex and frontal lobe

42. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits
 R.M. Kelly and P.L. Strick (San Diego, CA and Pittsburgh, PA, USA) 449

43. A new dynamic model of the cortico-basal ganglia loop
 A. Nambu (Tokyo, Japan) 461

44. Functional recovery after lesions of the primary motor cortex
 E.M. Rouiller and E. Olivier (Fribourg, Switzerland and Brussels, Belgium) 467

45. Adaptive behavior of cortical neurons during a perturbed arm-reaching movement in a nonhuman primate
 D.J. Weber and J. He (Tempe, AZ, USA) 477

46. The quest to understand bimanual coordination
 M. Wiesendanger and D.J. Serrien (Berne, Switzerland) 491

47. Functional specialization in dorsal and ventral premotor areas
 E. Hoshi and J. Tanji (Sendai and Kawaguchi, Japan) 507

48. Spatially directed movement and neuronal activity in freely moving monkey
 Y.-Y. Ma, J.-W. Ryou, B.-H. Kim and F.A.W. Wilson (Kunming, China and Tucson, AZ, USA) 513

Subject Index 521