Contents

Volume 1
Preface xix
Contributors xxi

1 Forty Years On 1
Michael J. Waring and L. P. G. Wakelin
1.1 Early Experiments Prior to Molecular Modeling 1
1.2 Formulation of Molecular Models and Mechanisms of Binding to DNA 3
1.3 Specificity of Nucleotide Sequence Recognition 4
1.4 Details at the Atomic and Molecular Levels 6
1.5 Identification of Motifs for Drug Design 9
1.6 Actions on Nucleoproteins, Chromatin, and Enzymes 11
References 12

2 Targeting HIV RNA with Small Molecules 18
Nathan W. Luedtke and Yitzhak Tor
2.1 Introduction 18
2.1.1 Translation 18
2.2 RNA Viruses 19
2.2.1 Magnesium (II) 20
2.2.2 Aminoglycosides 21
2.2.3 Ligand Specificity 23
2.2.4 Goals 23
2.3 The RRE and HIV Replication 24
2.4 Determination of RRE–Ligand Affinity and Specificity 25
2.4.1 Fluorescence Anisotropy 26
2.4.2 Solid-phase (Affinity-displacement) Assay 27
2.4.3 Ethidium Bromide Displacement 29
2.5 New RRE Ligands 29
2.5.1 Neomycin–acridine Conjugates 29
2.5.2 Dimeric Aminoglycosides 32
2.5.3 Guanidinoglycosides 32
2.6 Conclusions 36
Acknowledgments 37
References 37

3 RNA Targeting by Bleomycin 41
Sidney M. Hecht
3.1 Activation of Bleomycin for Polynucleotide Degradation 41
3.2 Bleomycin-mediated Cleavage of Transfer RNAs and tRNA Precursor Transcripts 42
3.3 Other RNA Targets for Bleomycin 44
3.4 Characteristics of RNA Cleavage by Fe-BLM 46
3.5 Chemistry of Bleomycin-mediated RNA Cleavage 50
3.6 Significance of RNA as a Target for Bleomycin 52
Acknowledgments 54
References 54

4 Inhibitors of the Tat–TAR Interactions 58
Chimmanamada U. Dinesh and Tariq M. Rana
4.1 Introduction 58
4.2 Mechanism of Transcriptional Activation by Tat 59
4.3 Tat–TAR Interactions 61
4.4 RNA as a Small Molecule Drug Target 63
4.5 Ligands for TAR RNA 63
4.5.1 TAR RNA Bulge Binders 63
4.5.2 Targeting Multiple Sites in TAR RNA 65
4.5.3 Targeting RNA with Peptidomimetic Oligomers 66
4.5.3.1 Backbone modification 66
4.5.3.2 d-Peptides 68
4.6 Combinatorial Library Approach in the Discovery of Small Molecule Drugs Targeting RNA 69
4.6.1 Combinatorial Chemistry 69
4.6.2 Split Synthesis 70
4.6.3 Encoding 72
4.6.4 On-bead Screening and Identification of Structure-specific TAR-Binding ligands 73
4.6.5 Ligand Sequence Analysis 74
4.6.6 Heterochiral Small Molecules Target TAR RNA Bulge 76
4.6.7 Inhibition of Tat trans-Activation in vivo 78
4.7 Cyclic Structures as RNA-targeting Drugs 78
4.8 Summary and Perspective 80
Acknowledgments 80
References 81
7.2 DNA Metallointercalators 147
7.2.1 Phenanthrenequinone Diamine Complexes of Rhodium 148
7.2.2 Dipyridophenazine Complexes of Ruthenium 148
7.3 Photophysical Studies of Electron Transport in DNA 150
7.3.1 Electron Transport between Ethidium and a Rhodium Intercalator 150
7.3.2 Ultrafast Charge Transport in DNA: Ethidium and 7-Deazaguanine 151
7.3.3 Base–Base Charge Transport 152
7.4 DNA-mediated Electron Transport on Surfaces 153
7.4.1 Characterization of DNA-modified Surfaces 153
7.4.2 Electrochemical Probe of Redox Reactions of Intercalators 154
7.4.3 Sensing Mismatches in DNA 155
7.5 Long-range Oxidative Damage to DNA 156
7.5.1 Long-range Oxidative Damage at 5'-GG-3' Sites by a Rhodium Intercalator 156
7.5.2 Models for Long-range DNA Charge Transport 158
7.5.3 Sequence Dependence of DNA Charge Transport 159
7.5.4 The Effects of Ion Distribution on Long-range Charge Transport 160
7.5.5 Mismatch Influence on Long-range Oxidative Damage to DNA 162
7.6 Using Charge Transport to Probe DNA–Protein Interactions and DNA Repair 163
7.6.1 DNA-Binding Proteins as Modulators of Oxidative Damage from a Distance 163
7.6.2 Detection of Transient Radicals in Protein/DNA Charge Transport 164
7.6.3 Electrical Detection of DNA–Protein Interactions 165
7.6.4 Repair of Thymine Dimers 167
7.6.5 Oxidative Damage to DNA in Nucleosomes 169
7.6.6 DNA Charge Transport within the Nucleus 170
7.7 Conclusions 171
Acknowledgements 172
References 172

8 DNA Interactions of Novel Platinum Anticancer Drugs 178

Viktor Brabec and Jana Kasparkova

8.1 Introduction 178
8.2 Modifications by Cisplatin 178
8.2.1 Adducts and Conformational Distortions 178
8.2.2 Effects on DNA Replication and Transcription 181
8.2.3 Cellular Resistance, Repair 182
8.2.4 Recognition of the Lesions by Cellular Proteins 184
8.2.4.1 HMG-domain proteins 184
8.2.4.2 Proteins without an HMG domain 185
8.2.5 Mechanism of Action of Cisplatin 188
8.3 Modifications by Antitumor Analogs of Cisplatin 189
8.3.1 Carboplatin 189
8.3.2 Oxaliplatin 190
8.3.3 Other Analogs 194
8.3.3.1 Bidentate analogs 194
8.3.3.2 Monodentate analogs 196
8.4 Modification by Antitumor Analogs of Clinically Ineffective Transplatin 197
8.4.1 Modifications by Transplatin 199
8.4.2 Analogs Containing Iminoether Groups 199
8.4.3 Analogs Containing Planar Amine Ligand 201
8.4.4 Other Analogs 203
8.5 Modifications by Polynuclear Platinum Antitumor Drugs 204
8.5.1 Dinuclear Compounds 205
8.5.2 Trinuclear Compound 209
8.6 Concluding Remarks 211
Acknowledgments 212
References 212

9 Electrochemical Detection of DNA with Small Molecules 224
Shigeori Takenaka
9.1 Introduction 224
9.2 Electrochemistry of Nucleic Acids 224
9.3 DNA Labeling Through a Covalent Bond 227
9.4 Electrochemistry of Metal Complexes Bound to DNA 227
9.5 Electrochemistry of DNA-binding Small Molecules 231
9.6 DNA Sensor Based on an Electrochemically Active DNA-binding Molecule as a Hybridization Indicator 233
9.7 Mismatched DNA Detection by Hybridization Indicator 236
9.8 DNA-detecting System using Hybridization Indicator as a Mediator 239
9.9 Application to DNA Microarray 239
9.10 Conclusion 240
9.11 Summary 241
Acknowledgments 241
References 241

10 Design and Studies of Abasic Site Targeting Drugs: New Strategies for Cancer Chemotherapy 247
Jean-Francois Constant and Martine Demeunynck
10.1 Introduction 247
10.1.1 Importance of Abasic Sites in Cells 247
10.1.2 Structure of Abasic DNA 249
10.1.3 Abasic Site Reactivity 251
10.1.4 Enzymology Of the Abasic Site 252
10.2 Drug Design 252
10.2.1 Introduction 252
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.2</td>
<td>Synthesis of the Heterodimers</td>
<td>256</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Nuclease Properties</td>
<td>259</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Molecules Inducing Multiple DNA Damage</td>
<td>262</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Drug–DNA Interaction</td>
<td>264</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Enzyme Inhibition</td>
<td>267</td>
</tr>
<tr>
<td>10.3</td>
<td>Pharmacological Data</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Dedication</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>272</td>
</tr>
<tr>
<td>11</td>
<td>Interactions of Macrocyclic Compounds with Nucleic Acids</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Marie-Paule Teulade-Fichou and Jean-Pierre Vigneron</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>278</td>
</tr>
<tr>
<td>11.2</td>
<td>Nucleotide Complexation</td>
<td>279</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Macrocyclic Polyamines</td>
<td>279</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Azoniacyclophanes</td>
<td>280</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Cyclobisintercalands</td>
<td>282</td>
</tr>
<tr>
<td>11.2.3.1</td>
<td>Acridinium derivatives</td>
<td>282</td>
</tr>
<tr>
<td>11.2.3.2</td>
<td>Phenanthridinium derivatives</td>
<td>283</td>
</tr>
<tr>
<td>11.2.3.3</td>
<td>Polyamino naphthalenophanes and acridinophanes</td>
<td>284</td>
</tr>
<tr>
<td>11.3</td>
<td>Nucleic Acids Complexation</td>
<td>288</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Azoniacyclophanes</td>
<td>288</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Porphyrin Derivatives</td>
<td>289</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Phenanthridinium Derivatives</td>
<td>291</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Acridinium Derivatives</td>
<td>291</td>
</tr>
<tr>
<td>11.3.4.1</td>
<td>SDM Macrocycle</td>
<td>292</td>
</tr>
<tr>
<td>11.3.4.2</td>
<td>BisA Macrocycle</td>
<td>294</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Miscellaneous</td>
<td>306</td>
</tr>
<tr>
<td>11.3.5.1</td>
<td>Naphthalene diimide derivatives</td>
<td>306</td>
</tr>
<tr>
<td>11.3.5.2</td>
<td>Phenazine derivatives</td>
<td>309</td>
</tr>
<tr>
<td>11.3.5.3</td>
<td>Aminocalixarenes and aminocyclodextrins</td>
<td>309</td>
</tr>
<tr>
<td>11.4</td>
<td>Conclusion and Perspectives</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>311</td>
</tr>
<tr>
<td>12</td>
<td>Triplex- versus Quadruplex-specific Ligands and Telomerase Inhibition</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Patrizia Alberti, Magali Hoarau, Lionel Guittat, Masashi Takasugi, Paola B. Arimondo, Laurent Lacroix, Martin Mills, Marie-Paule Teulade-Fichou, Jean-Pierre Vigneron, Jean-Marie Lehn, Patrick Mailliet, and Jean-Louis Mergny</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>315</td>
</tr>
<tr>
<td>12.2</td>
<td>Nucleic Acids Samples</td>
<td>317</td>
</tr>
<tr>
<td>12.3</td>
<td>Dialysis Results</td>
<td>322</td>
</tr>
<tr>
<td>12.4</td>
<td>Induction of Quadruplex Structures</td>
<td>327</td>
</tr>
<tr>
<td>12.5</td>
<td>Triplex versus Quadruplex Stabilization</td>
<td>328</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusion and Further Developments</td>
<td>332</td>
</tr>
</tbody>
</table>
13 Design and Analysis of G4 Recognition Compounds 337
Shozeb Haider, Gary N. Parkinson, Martin A. Read, and Stephen Neidle
13.1 Introduction 337
13.2 Telomeric DNA 340
13.3 Crystal Structures of G-quadruplexes 342
13.3.1 The d(TG₄T) Quadruplex 342
13.3.2 The Na⁺ form of d(G₄T₄G₄) Oxytricha nova telomeric DNA 343
13.3.3 The K⁺ form of d(G₄T₄G₄) Oxytricha nova Telomeric DNA 344
13.3.4 The Crystal Structure of the Human Telomere G-quadruplex 345
13.3.5 The r(UG₄U) RNA Quadruplex 347
13.4 NMR Studies of Quadruplexes 347
13.5 Quadruplex-binding Ligands 348
13.6 NMR and Modeling Studies of Quadruplex–Ligand Complexes 349
Appendix. Methodology for Ligand Quadruplex Modeling 351
References 355

14 Triple Helix-specific Ligands 360
Keith R. Fox and Richard A. J. Darby
14.1 Introduction 360
14.2 Triplex-binding Ligands 362
14.2.1 Benzopyridoindole Derivatives 362
14.2.2 Coralyne 365
14.2.3 Naphthylquinolines 366
14.2.4 Bis-aminooanthraquinones 367
14.2.5 Aminoglycosides 369
14.2.6 Other Ligands 369
14.3 Sequence and Structural Selectivity of Triplex-specific Ligands 370
14.3.1 Sequence Selectivity 370
14.3.2 Binding to Different Motifs 370
14.4.1 Intercalators 371
14.4.2 Minor Groove Binders 371
14.5 Tethered DNA-binding Agents 373
14.5.1 Tethered Triplex-binding Ligands 373
14.5.2 Tethered Intercalators 374
14.5.3 Other Tethered DNA-binding Agents 374
14.6 Other Uses of Triplex-binding Ligands 375
14.6.1 Relaxing the specificity of triplex formation 375
14.6.2 Triplex Cleaving Agents 375
14.6.3 Antigene Activity 376
Acknowledgments 376
References 376

15 Polyamide Dimer Stacking in the DNA Minor Groove and Recognition of T-G Mismatched Base Pairs in DNA 384
Eilyn R. Lacy, Erik M. Madsen, Moses Lee, and W. David Wilson
15.1 Introduction: Sequence-specific Recognition of DNA by Synthetic Molecules 384
15.1.1 DNA Sequence Recognition 384
15.1.2 Stacking Behavior of Polyamides and DNA Recognition 386
15.2 T-G Mismatched DNA Base Pairs and their Biological Relevance 389
15.3 Potential Applications for Recognition of Mismatched Base Pairs 390
15.4 Structure of T-G Mismatched Base Pairs 390
15.5 Binding of Imidazole-containing Polyamide Analogs to T-G Mismatches through a Dimeric Binding Motif – Structural Studies 391
15.6 Binding of Imidazole-containing Polyamides to T-G Mismatches through a Dimeric Binding Motif: Thermodynamic and Kinetic Studies 395
15.6.1 Stoichiometry of Complexes 395
15.6.2 Binding Constants and Cooperativity 398
15.6.3 Kinetic Studies 400
15.7 Developing Molecules Capable of Recognizing Mismatches in DNA 404
15.8 Use of the T-G Recognition Motif by Im/Im Pairs to Probe the Effects of the Terminal Head Group on the Stacking of Polyamides 405
15.9 Future Directions 407
15.9.1 Polyamide–DNA Complexes 407
15.9.2 Mismatched Base Pair Recognition 408
Acknowledgments 408
Dedication of this Chapter to Professor J. William Lown on the Occasion of his Retirement 409
References 409

16 Dicationic DNA Minor Groove Binders as Antimicrobial Agents 414
Richard R. Tidwell and David W. Boykin
16.1 Introduction 414
16.1.1 Intercalation 415
16.1.2 Minor Groove Binding 416
16.1.3 Netropsin 417
16.1.4 DAPI 419
16.1.5 Berenil 420
16.1.6 Pentamidine 421
16.2 Dicationic Carbazoles and Analogs 422
16.2.1 Introduction 422
16.2.2 DNA Binding of Dicationic Carbazoles and Analogs 423
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2.3 Antimicrobial Activity of Carbazoles and Related Analogs</td>
<td>427</td>
</tr>
<tr>
<td>16.2.4 Pro-drugs of Carbazoles and Related Analogs</td>
<td>429</td>
</tr>
<tr>
<td>16.2.5 Synthesis of Carbazoles and Related Analogs</td>
<td>431</td>
</tr>
<tr>
<td>16.3 Dicationic Furans</td>
<td>433</td>
</tr>
<tr>
<td>16.3.1 Introduction</td>
<td>433</td>
</tr>
<tr>
<td>16.3.2 DNA Binding of Furamidine and Analogs</td>
<td>434</td>
</tr>
<tr>
<td>16.3.3 Antimicrobial Activity of Furamidine and Analogs</td>
<td>436</td>
</tr>
<tr>
<td>16.3.4 Pro-drug Approaches for Furamidine</td>
<td>444</td>
</tr>
<tr>
<td>16.3.5 Synthetic Approaches for Furamidine and Analogs</td>
<td>446</td>
</tr>
<tr>
<td>16.4 Conclusions</td>
<td>451</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>452</td>
</tr>
<tr>
<td>References</td>
<td>452</td>
</tr>
<tr>
<td>17 Energetics of Anthracycline–DNA Interactions</td>
<td>461</td>
</tr>
<tr>
<td>Jonathan B. Chaires</td>
<td></td>
</tr>
<tr>
<td>17.1 Introduction</td>
<td>461</td>
</tr>
<tr>
<td>17.2 Binding Free Energy</td>
<td>463</td>
</tr>
<tr>
<td>17.3 Salt Dependency of Daunorubicin Binding to DNA</td>
<td>465</td>
</tr>
<tr>
<td>17.4 Binding Enthalpy and the Temperature Dependence of Binding</td>
<td>468</td>
</tr>
<tr>
<td>17.5 Thermodynamic Profile for Daunorubicin Binding to Calf-Thymus DNA</td>
<td>471</td>
</tr>
<tr>
<td>17.6 Hydration Changes</td>
<td>472</td>
</tr>
<tr>
<td>17.7 Substituent Contributions</td>
<td>475</td>
</tr>
<tr>
<td>17.8 Isostructural is not Isoenergetic</td>
<td>476</td>
</tr>
<tr>
<td>17.9 Parsing the Binding Free Energy</td>
<td>477</td>
</tr>
<tr>
<td>17.10 Summary</td>
<td>478</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>479</td>
</tr>
<tr>
<td>References</td>
<td>479</td>
</tr>
<tr>
<td>18 Acridine-4-carboxamides and the Concept of Minimal DNA Intercalators</td>
<td>482</td>
</tr>
<tr>
<td>William A. Denny</td>
<td></td>
</tr>
<tr>
<td>18.1 DNA Intercalation</td>
<td>482</td>
</tr>
<tr>
<td>18.1.1 Definition</td>
<td>482</td>
</tr>
<tr>
<td>18.1.2 Effect of Chromophore Size</td>
<td>482</td>
</tr>
<tr>
<td>18.1.3 Effect of Chromophore Cross-sectional Thickness</td>
<td>484</td>
</tr>
<tr>
<td>18.2 Intercalative Binding and Cytotoxicity</td>
<td>484</td>
</tr>
<tr>
<td>18.2.1 Correlation of Cytotoxicity with Mode, Strength and Kinetics of Binding</td>
<td>484</td>
</tr>
<tr>
<td>18.2.2 The Drive For Tight Binders; Chromophore and/or Side Chain Modulation</td>
<td>486</td>
</tr>
<tr>
<td>18.2.3 Mechanism of Cytotoxicity of DNA Intercalators: Topoisomerase Poisoning</td>
<td>486</td>
</tr>
<tr>
<td>18.2.4 Pharmacological Drawbacks of Tight DNA Binding: the Concept of “Minimal Intercalators”</td>
<td>487</td>
</tr>
<tr>
<td>18.3 Classes of “Minimal Intercalators”</td>
<td>487</td>
</tr>
</tbody>
</table>
18.3.1 Styrylquinolines 487
18.3.2 2-Phenylquinolines 488
18.3.3 Phenylbenzimidazoles 489
18.3.5 Phenazines 490
18.3.4 Dibenzodioxins 491
18.4 Acridinecarboxamides: the Development of DACA 491
18.4.1 9-Aminoacridine-4-carboxamides 491
18.4.2 DACA and Other Acridine-4-carboxamides 493
18.4.2.1 Introduction 493
18.4.2.2 Interaction of DACA with topoisomerase 494
18.4.2.3 Cellular studies with DACA 495
18.4.2.4 Metabolism and pharmacology of DACA 495
18.4.2.5 Clinical studies with DACA 496
18.5 Conclusions 496
References 497

19 DNA Topoisomerase-targeted Drugs 503
M. Palumbo, B. Gatto, and C. Sissi
19.1 Introduction 503
19.2 Structure and Functions of DNA Topoisomerases 503
19.2.1 Type I Topoisomerases 504
19.2.1.1 Structural features 504
19.2.1.2 Catalytic process 505
19.2.2 Type II DNA Topoisomerases 506
19.2.2.1 Structural features 507
19.2.2.2 Catalytic process 508
19.3 Drug Targeted at Topoisomerases 509
19.3.1 Top Poisons 510
19.3.1.1 Top1 poisons 510
19.3.1.2 Top2 poisons 515
19.3.1.3 Sequence specificity of top poisoning 524
19.3.2 Top Inhibitors 525
19.3.2.1 Human top2 inhibitors 525
19.3.2.2 Bacterial top2 inhibitors 525
19.3.3 Mixed Top1/2 Poisons or Inhibitors 527
19.4 Conclusions 529
References 530

20 Targeting DNA and Topoisomerase I with Indolocarbazole Antitumor Agents 538
Christian Bailly
20.1 Introduction 538
20.2 Naturally Occurring Indolocarbazoles 540
20.2.1 Staurosporine and Analogs with a Pyranose Sugar Moiety 540
20.2.2 K252a and Analogs with a Furanose Sugar Moiety 542
20.2.3 Rebeccamycin 543
20.2.4 AT2433 545
20.3 Synthetic Indolocarbazole Derivatives Targeting DNA and Topoisomerase I 545
20.3.1 Influence of Chloro and Bromo Substituents on the IND Chromophore 546
20.3.2 Modification of the Imide Heterocycle 548
20.3.3 Halogenoacetyl Derivatives 549
20.3.4 Glucose and Galactose Derivatives: Stereospecific DNA Recognition 549
20.3.5 From Rebeccamycin to Staurosprine-type Analogs 551
20.3.6 Amino Sugar Derivatives 553
20.3.7 Methylation of the Indole Nitrogen 553
20.3.8 Indolo[2,3-c]carbazole 555
20.3.9 Rebeccamycin Dimers and Conjugates 556
20.4 Design of a tumor-active compound: NB-506 557
20.4.1 From BE13793C to ED-110 and NB-506 557
20.4.2 DNA Binding and Topoisomerase I Inhibition 559
20.4.3 Cytotoxicity and Apoptosis 559
20.4.4 NB-506-resistant Cell Lines 561
20.4.5 Antitumor Activity 562
20.4.6 Inhibition of the Topoisomerase I Kinase Activity 562
20.4.7 A Novel Clinical Candidate: J-107088 564
20.4.8 Biosynthesis 566
20.5 Conclusion 567
Acknowledgments 567
References 567

21 Defining the Molecular Interactions that are Important for the Poisoning of Human Topoisomerase I by Benzimidazoles and Terbenzimidazoles 576
Daniel S. Pilch, Hsing-Yin Liu, Tsai-Kun Li, Edmond J. LaVoie, and Christopher M. Barbieri
21.1 Human DNA Topoisomerase Type I 576
21.2 Topoisomerase I as a Target for Anticancer Drugs 577
21.3 Benzimidazoles 577
21.3.1 The Extent to which Benzimidazoles Stimulate hTOP1-mediated DNA Cleavage Depends on their Structure 577
21.3.2 Identification of hTOP1 as the Specific Cytotoxic Target of 5N2pMPBZ 579
21.3.3 Viscometric Measurements Reveal that 56MD2pMPBZ Binding Unwinds Negative Supercoils in pUC19, Consistent with an Intercalative Mode of Interaction 580
21.3.4 The Affinity of Benzimidazoles for Duplex DNA is Modulated by the Structure and Electronic Properties of the Substituents on the Benzimidazole Rings 583
21.3.5 Benzimidazole Binding to Duplex DNA Requires the Ligand to be in its Fully Protonated Cationic State 585

21.3.6 DNA Binding Alone is not Sufficient to Impart Benzimidazoles with the Ability to Trap and Stabilize the Cleavable TOP1–DNA Complex 587

21.3.7 A Structural Model for the Ternary hTOP1–5N2pHPBZ–DNA Cleavable Complex that is Consistent with the Current Structure–Activity Database 587

21.4 Terbenzimidazoles 590

21.4.1 The Pattern of hTOP1-mediated DNA Cleavage Induced by Terbenzimidazoles is Distinct from that Induced by CPT 590

21.4.2 TOP1 Poisoning by Terbenzimidazoles is not the Result of Ligand-induced DNA Unwinding 592

21.4.3 TB Derivatives Exhibit Linear Dichroism Properties Characteristic of Minor Groove-directed DNA Binding 593

21.4.4 The Relative DNA-binding Affinities of the Terbenzimidazoles is Correlated with their Relative TOP1-poisoning Activities 594

21.4.5 A Potential Role for Ligand Interactions with the DNA Minor Groove in Stabilization of the TOP1–DNA Cleavable Complex 596

21.4.5.1 5PTB preferentially binds and stabilizes bent versus normal duplex DNA 598

21.4.5.2 5PTB binding does not remove helical bends from kinetoplast DNA 599

Acknowledgments 600

References 601

22 Binding and Reaction of Calicheamicin and Other Enediyne Antibiotics with DNA 609

Joseph P. Cosgrove and Peter C. Dedon

22.1 Introduction 609

22.2 Sources, Biosynthesis, and Structural Conservation 609

22.3 Mechanisms of Target Recognition 612

22.3.1 Overall Scheme for Binding and Activation 612

22.3.2 Structure of the Calicheamicin–DNA Complex 613

22.3.3 Esperamicin Structure and Function 615

22.3.4 Structure and Dynamics of Calicheamicin Binding Sites 616

22.3.5 Neocarzinostatin Recognition of Bulged DNA Structures 618

22.4 Products of Enediyne-induced DNA Damage 620

22.4.1 Proportions of Single- and Double-stranded DNA Lesions Produced by Enediynes 620

22.4.2 Oxidation of the 1'-Position of Deoxyribose and the Biochemistry of the Deoxyribonolactone Abasic Site 622

22.4.3 Oxidation of the 4'-Position of Deoxyribose and the Chemistry of Base Propanal 623

22.4.4 Oxidation of the 5'-Position of Deoxyribose and the Chemistry of Butenedialdehyde 624
22.4.5 Covalent Adducts of Enediynes with Deoxyribose
22.5 Enediyne-induced DNA Damage in Cells
22.5.1 Enediyne Target Recognition in Chromatin and Cells
22.5.2 Molecular and Genomics Approaches to Understanding Cellular Responses to Enediynes
22.6 Summary
Acknowledgments
References

23 Devising a Structural Basis for the Potent Cytotoxic Effects of Ecteinascidin
743
Federico Gago and Laurence H. Hurley
23.1 Introduction
23.2 Biological Activity and Characterization of the Active Compounds
23.3 Structural Characterization and Synthesis of Ecteinascidins
23.4 Structure–Activity Relationships
23.5 Structural Characterization of Et 743–DNA Adducts
23.6 Structural Studies of Ecteinascidin–DNA Complexes
23.7 Molecular Basis for Covalent Reactivity and Sequence Selectivity
23.8 The Rate of Reversal of Et 743 from Drug-Modified 5'-AGT is Faster than that from Drug-modified 5'-AGC Sequences
23.9 Et 743 can Reverse from its Initial Covalent Adduct Site and Bond to an Unmodified Target Sequence
23.10 The Kinetics of the Covalent Modification of 5'-AGC and 5'-AGT Sequences by Et 743 are Similar
23.11 The Differences in the Rate of the Reverse Reaction May Be Derived from Structural Differences between Et 743–DNA Adducts at the 5'-AGC and 5'-AGT Sequences
23.12 Molecular Targets for Et 743
23.12.1 Involvement of Transcription-coupled Nucleotide Excision Repair in Mediating the Cytotoxic Effects of Et 743
23.12.2 Suppression of MDR1 Transcription by Et 743
23.13 Relationship of Structural Consequences of DNA Modification by Et 743 to Biological Effects
23.14 Conclusions
Acknowledgments
References

24 The Azinomycins. Discovery, Synthesis, and DNA-binding Studies
676
Maxwell Casely-Hayford and Mark Searcey
24.1 Introduction
24.2 Isolation of the Azinomycins 1–3
24.3 Studies of the Truncated Analog
24.3.1 Stereoselective Synthesis of the Truncated Azinomycin

24.3.2 DNA-binding and Biological Activity Studies of the Truncated Fragment and Synthetic Analogs 681
24.4 Studies on the Total Synthesis of the Azinomycin A 683
24.4.1 Synthesis of the 1-Azabicyclo[3.1.0]hex-2-ylidene Dehydroamino Acid Subunit 683
24.4.1.1 Synthesis of the aldehyde unit 684
24.4.1.2 Wadsworth–Horner–Emmons reaction, bromination, and ring closure 684
24.4.2 The Total Synthesis of Azinomycin A 686
24.5 Computational Studies of DNA Binding of the Azinomycins 689
24.6 Experimental DNA-binding Studies and Antitumor Activities of the Full Azinomycin Structures – Is Crosslinking Required for Biological Activity? 690
24.7 Conclusions 691
Acknowledgments 694
References 694

25 The Generation and DNA-Interaction of PBD and CBI Libraries 697
Alison Hardy, Jane M. Berry, Natalie Brooks-Turner, Philip W. Howard, John A. Hartley, and David E. Thurston
25.1 Introduction 697
25.2 Synthesis of Tethered PBD and CBI Constructs 699
25.2.1 Synthesis of Capping Units 699
25.2.2 Attachment of PBD and CBI Capping Units to Solid Support 700
25.3 On-bead DNA Interaction 701
25.3.1 Interaction of Double-stranded DNA to PBDs and CBIs On-bead 701
25.3.2 On-bead DNA Sequence Selectivity 703
25.4 Library Synthesis 704
25.4.1 Library Screening 706
25.5 Conclusion 709
Acknowledgments 709
References 709

Index 711