COMPACT BLUE-GREEN LASERS

W. P. RISK
T. R. GOSNELL
A. V. NURMIKKO
Preface

1 The need for compact blue-green lasers
 1.1 A short historical overview 1
 1.2 Applications for compact blue-green lasers 3
 1.2.1 Optical data storage 3
 1.2.2 Reprographics 5
 1.2.3 Color displays 6
 1.2.4 Submarine communications 8
 1.2.5 Spectroscopic applications 12
 1.2.6 Biotechnology 14
 1.3 Blue-green and beyond 17
 References 17

Part 1 Blue-green lasers based on nonlinear frequency conversion 20
 2 Fundamentals of nonlinear frequency upconversion 20
 2.1 Introduction 20
 2.2 Basic principles of SHG and SFG 21
 2.2.1 The nature of the nonlinear polarization 21
 2.2.2 Frequencies of the induced polarization 23
 2.2.3 The d coefficient 28
 2.2.4 The generated wave 30
 2.2.5 SHG with monochromatic waves 34
 2.2.6 Multi-longitudinal mode sources 34
 2.2.7 Pump depletion 38
 2.3 Spatial confinement 43
 2.3.1 Boyd-Kleinman analysis for SHG with circular
 gaussian beams 43
 2.3.2 Guided-wave SHG 51
2.4 Phasematching

2.4.1 Introduction
2.4.2 Birefringent phasematching
2.4.3 Quasi-phasematching (QPM)
2.4.4 Waveguide phasematching
2.4.5 Other phasematching techniques
2.4.6 Summary

2.5 Materials for nonlinear generation of blue-green light

2.5.1 Introduction
2.5.2 Lithium niobate (LN)
2.5.3 Lithium tantalate (LT)
2.5.4 Potassium titanyl phosphate (KTP)
2.5.5 Rubidium titanyl arsenate (RTA)
2.5.6 Other KTP isomorphs
2.5.7 Potassium niobate (KN)
2.5.8 Potassium lithium niobate (KLN)
2.5.9 Lithium iodate
2.5.10 Beta barium borate (BBO) and lithium borate (LBO)
2.5.11 Other materials

2.6 Summary

References

3 Single-pass SHG and SFG

3.1 Introduction

3.2 Direct single-pass SHG of diode lasers

3.2.1 Early experiments with gain-guided lasers
3.2.2 Early experiments with index-guided lasers
3.2.3 High-power index-guided narrow-stripe lasers
3.2.4 Multiple-stripe arrays
3.2.5 Broad-area lasers
3.2.6 Master oscillator-power amplifier (MOPA) configurations
3.2.7 Angled-grating distributed feedback (DFB) lasers

3.3 Single-pass SHG of diode-pumped solid-state lasers

3.3.1 Frequency-doubling of 1064-nm Nd:YAG lasers
3.3.2 Frequency-doubling of 946-nm Nd:YAG lasers
3.3.3 Sum-frequency mixing

3.4 Summary

References
4 Resonator-enhanced SHG and SFG 183
 4.1 Introduction 183
 4.2 Theory of resonator enhancement 187
 4.2.1 The impact of loss 189
 4.2.2 Impedance matching 191
 4.2.3 Frequency matching 193
 4.2.4 Approaches to frequency locking 194
 4.2.5 Mode matching 207
 4.3 Other considerations 213
 4.3.1 Temperature locking 213
 4.3.2 Modulation 214
 4.3.3 Bireflection in monolithic ring resonators 215
 4.4 Summary 220

References 220

5 Intracavity SHG and SFG 223
 5.1 Introduction 223
 5.2 Theory of intracavity SHG 224
 5.3 The "green problem" 229
 5.3.1 The problem itself 229
 5.3.2 Solutions to the "green problem" 231
 5.3.3 Single-mode operation 235
 5.4 Blue lasers based on intracavity SHG of 946-nm Nd:YAG lasers 245
 5.5 Intracavity SHG of Cr:LiSAF lasers 249
 5.6 Self-frequency-doubling 250
 5.6.1 Nd:LN 251
 5.6.2 NYAB 252
 5.6.3 Periodically-poled materials 253
 5.6.4 Other materials 253
 5.7 Intracavity sum-frequency mixing 253
 5.8 Summary 255

References 256

6 Guided-wave SHG 263
 6.1 Introduction 263
 6.2 Fabrication issues 264
 6.3 Integration issues 269
 6.3.1 Feedback and frequency stability 270
 6.3.2 Polarization compatibility 276
 6.3.3 Coupling 282
 6.3.4 Control of the phasematching condition 283
 6.3.5 Extrinsic efficiency enhancement 284
Part 2
Upconversion lasers: Physics and devices

7
Essentials of upconversion laser physics

7.1
Introduction to upconversion lasers and rare-earth optical physics

7.1.1
Overview of rare-earth spectroscopy
7.1.2
Qualitative features of rare-earth spectroscopy

7.2
Elements of atomic structure

7.2.1
The effective central potential
7.2.2
Electronic structure of the free rare-earth ions

7.3
The Judd-Ofelt expression for optical intensities

7.3.1
Basic formulation
7.3.2
The Judd-Ofelt expression for the oscillator strength
7.3.3
Selection rules for electric dipole transitions

7.4
Nonradiative relaxation

7.5
Radiationless energy transfer

7.6
Mechanisms of upconversion

7.6.1
Resonant multi-photon absorption
7.6.2
Cooperative upconversion
7.6.3
Rate equation formulation of upconversion by radiationless energy transfer
7.6.4
The photon avalanche

7.7
Essentials of laser physics

7.7.1
Qualitative picture
7.7.2
Rate equations for continuous-wave amplification and laser oscillation

7.8
Summary

References
8.3.2 Tm$^{3+}$ fiber lasers 436
8.3.3 Pr$^{3+}$ fiber lasers 445
8.3.4 Ho$^{3+}$ fiber lasers, $^5S_2 \rightarrow ^5I_8$ transition at -550 nm 455
8.3.5 Nd$^{3+}$ fiber lasers 457

8.4 Prospects 458
References 460

Part 3 Blue-green semiconductor lasers 468

9 Introduction to blue-green semiconductor lasers 468

9.1 Overview 468

9.2 Overview of physical properties of wide-bandgap semiconductors 470
9.2.1 Lattice matching 470
9.2.2 Epitaxial lateral overgrowth (ELOG) 472
9.2.3 Basic physical parameters 474

9.3 Doping in wide-gap semiconductors 475

9.4 Ohmic contacts for p-type wide-gap semiconductors 478
9.4.1 Ohmic contacts to p-AlGaInN 479
9.4.2 New approaches to p-contacts 481
9.4.3 Ohmic contacts to p-ZnSe: bandstructure engineering 482

9.5 Summary 484

References 484

10 Device design, performance, and physics of optical gain of the InGaN QW violet diode lasers 487

10.1 Overview of blue and green diode laser device issues 487
10.2 The InGaN MQW violet diode laser: Design and performance 488
10.2.1 Layered design and epitaxial growth 488
10.2.2 Diode laser fabrication and performance 496
10.3 Physics of optical gain in the InGaN MQW diode laser 501
10.3.1 On the electronic microstructure of InGaN QWs 506
10.3.2 Excitonic contributions in green-blue ZnSe-based QW diode lasers 509

10.4 Summary 513

References 513

11 Prospects and properties for vertical-cavity blue light emitters 517

11.1 Background 517

11.2 Optical resonator design and fabrication: Demonstration of optically-pumped VCSEL operation in the 380-410-nm range 518
11.2.1 All-dielectric DBR resonator 519
11.2.2 Stress engineering of AlGaN/GaN DBRs 521
11.3 Electrical injection: Demonstration resonant-cavity LEDs 524
11.4 Summary 530
References 530
12 Concluding remarks 533
References 536

Index 537