Neurobiology
OF
Diabetic Neuropathy

EDITED BY

DAVID TOMLINSON
Neuroscience Division
University of Manchester
School of Biological Sciences
Manchester, United Kingdom

ACADEMIC PRESS
An imprint of Elsevier Science
Amsterdam Boston London New York Oxford Paris
San Diego San Francisco Singapore Sydney Tokyo
PART I
Primary Mechanisms

How Does Glucose Generate Oxidative Stress In Peripheral Nerve?
IRINA G. OBROSOVA

I. Manifestations of Diabetes-Associated Oxidative Stress in the Peripheral Nervous System (PNS) .. 4
II. Role for Oxidative Stress in Peripheral Diabetic Neuropathy 6
III. Origin of Diabetes-Induced Oxidative Stress in PNS 9
IV. Interactions between Oxidative Stress and Other Hyperglycemia-Initiated Factors in Pathogenesis of Diabetic Peripheral Neuropathy ... 12
V. Role for Aldose Reductase (AR) in Diabetes-Induced Oxidative Stress in Peripheral Nerve and Endothelium ... 14
VI. Conclusion .. 22
References .. 22

Glycation in Diabetic Neuropathy: Characteristics, Consequences, Causes, and Therapeutic Options
PAUL J. THORNALLEY

I. Glycation: A Definition .. 38
II. Nomenclature: Early and Advanced Glycation 38
III. Evidence for Increased Glycation in Diabetic Neuropathy 40
IV. Indirect Evidence for Involvement of Increased Glycation in Diabetic Neuropathy: Effects of Antiglycation Agents 42
V. Glycation-Related Correlates in Risk Analysis of Clinical Diabetic Neuropathy ... 43
PART II
Secondary Changes

Protein Kinase C Changes in Diabetes: Is the Concept Relevant to Neuropathy?

JOSEPH EICHBERG

I. Introduction ... 62
II. Molecular Features of Protein Kinase C (PKC) 62
III. Activation and Regulation of PKC 65
IV. PKC and Nonneural Diabetic Complications 66
V. PKC and 1,2-Diacylglycerol in Normal and Diabetic Nerve 68
VI. PKC and Na⁺,K⁺-ATPase 70
VII. PKC Actions: Neural versus Neurovascular? 72
VIII. Emerging and Potential Roles for PKC in Nerve 73
IX. Conclusions and Future Directions 75
References .. 76

Are Mitogen-Activated Protein Kinases Glucose Transducers for Diabetic Neuropathies?

TERTIA D. PURVES AND DAVID R. TOMLINSON

I. Introduction ... 83
II. Mitogen-Activated Protein (MAP) Kinases 84
III. Glucose, Diabetes, and MAP Kinases 86
IV. MAP Kinase Activation in Primary Sensory Neurons 90
V. MAP Kinases and Neuropathy in the Streptozotocin Rat Model of Diabetes ... 95
VI. MAP Kinase Activation in Sural Nerve from Type I and Type II Diabetic Patients 101
VII. Role of MAP Kinase Activation 101
CONTENTS

VIII. What Is the Molecular Basis for the Development of Nerve Conduction Deficits and Structural Abnormalities in Diabetes? 106
References 107

Neurofilaments in Diabetic Neuropathy
PAUL FERNYHOUGH AND ROBERT E. SCHMIDT

I. Introduction 116
II. Neurofilament Structure 116
III. Phosphorylation of Neurofilament 118
IV. Axonal Transport of Neurofilament 120
V. Neurofilaments and Axonal Cytoskeleton: Regulation of Axonal Caliber and Slow Transport 121
VI. Neurofilament Pathology in Diabetic Sensory and Autonomic Neuropathy 121
VII. Possible Pathogenetic Mechanisms 128
VIII. Future Directions 136
References 136

Apoptosis in Diabetic Neuropathy
AVIVA TOLKOVSKY

I. Introduction 145
II. Apoptotic Pathways 146
III. Apoptotic Indicators in Diabetic Neuropathy 153
IV. Conclusions 156
References 156

Nerve and Ganglion Blood Flow in Diabetes: An Appraisal
DOUGLAS W. ZOCHODNE

I. Introduction 162
II. Anatomy and Physiology of Peripheral Nerve and Spinal Ganglia Vascular Supply 162
III. Measurements of Local Blood Flow 166
IV. Changes in Nerve Blood Flow with Ischemia and Injury 171
V. Nerve and Ganglia Blood Flow in Experimental and Human Diabetes 175
References 192
PART III
Manifestations

Potential Mechanisms of Neuropathic Pain in Diabetes

NIGEL A. CALCUTT

I. Diabetic Neuropathy and Painful Diabetic Neuropathy 206
II. Clinical Clues to Potential Mechanisms of Painful Diabetic Neuropathy . 207
III. Sensory Dysfunction in Diabetic Animals 208
IV. Using Animal Models to Predict Therapeutic Efficacy of Experimental Agents ... 211
V. Contribution of Peripheral Nerves to Hyperalgesia in Diabetic Animals . 214
VI. A Potential Role for Altered Spinal Processing in Diabetic Hyperalgesia . 217
VII. Summary ... 219
References ... 219

Electrophysiologic Measures of Diabetic Neuropathy:
Mechanism and Meaning

JOSEPH C. AREZZO AND ELENA ZOTOVA

I. Introduction .. 230
II. Functional and Structural Deficits Associated with Diabetic Neuropathy ... 231
III. Whole Nerve Neural Response ... 232
IV. Maximal Nerve Conduction Velocity 236
V. F-Wave Responses .. 240
VI. Distribution of Velocities .. 241
VII. Amplitude and Area .. 242
VIII. Refractory Periods and Neural Fatigue 245
IX. Measures of Excitability ... 248
X. Synopsis ... 249
References ... 250

Neuropathology and Pathogenesis of Diabetic Autonomic Neuropathy

ROBERT E. SCHMIDT

I. Introduction .. 258
II. Neuropathology of Clinical Diabetic Autonomic Neuropathy 259
III. Experimental Diabetic Autonomic Neuropathy 263
IV. Proposed Pathogenetic Mechanisms of Diabetic Autonomic Neuropathy .. 271
V. Summary ... 281
References ... 281
Role of the Schwann Cell in Diabetic Neuropathy

LUKE ECKERSLEY

I. Peripheral Nervous System Development ... 294
II. Function of Schwann Cells ... 296
III. Schwann Cells in Diabetic Neuropathy ... 300
IV. Neuropathy in Diabetic Patients ... 301
V. Etiological Models for Nerve Dysfunction .. 301
VI. Paranodal Structure and Axoglial Dysjunction 310
VII. Is Regeneration Abnormal in Diabetic Neuropathy? 311
VIII. Reversible or Irreversible Schwann Cell Injury? 313
IX. Conclusions ... 313
References .. 313

PART IV
Potential Treatment

Polyol Pathway and Diabetic Peripheral Neuropathy

PETER J. OATES

I. Introduction .. 326
II. Polyol Pathway .. 331
III. Enzymes of the Polyol Pathway .. 333
IV. Physiological Role of Polyol Pathway Enzymes 345
V. Localization of AR and SDH in Peripheral Nerve 348
VI. Inhibitors of Polyol Pathway Enzymes 351
VII. Polyol Pathway Inhibition in Models of Diabetic Neuropathy 353
VIII. Effects of Polyol Pathway Inhibitors in Human Diabetic Neuropathy . 362
IX. Inhibition of Nerve Sorbitol versus AR Metabolic Flux 366
X. Future Research Directions ... 375
References .. 377

STUART C. APFEL

I. Introduction .. 394
II. Rationale for the Application of Nerve Growth Factor to Diabetic Polyneuropathy .. 397
III. Early Clinical Studies .. 402
IV. Phase III Clinical Trial of Recombinant Human Nerve Growth Factor in Diabetic Polyneuropathy ... 405
Angiotensin-Converting Enzyme Inhibitors: Are there Credible Mechanisms for Beneficial Effects in Diabetic Neuropathy?

RAYAZ A. MALIK AND DAVID R. TOMLINSON

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>415</td>
</tr>
<tr>
<td>II. Vascular Basis for Diabetic Neuropathy</td>
<td>416</td>
</tr>
<tr>
<td>III. Interventions</td>
<td>418</td>
</tr>
<tr>
<td>IV. Physiology of Angiotensin II</td>
<td>421</td>
</tr>
<tr>
<td>V. Nonvascular Effects of Angiotensin II</td>
<td>422</td>
</tr>
<tr>
<td>VI. Pharmacology of Angiotensin-Converting Enzyme Inhibition</td>
<td>423</td>
</tr>
<tr>
<td>VII. Tissue Renin/Angiotensin</td>
<td>423</td>
</tr>
<tr>
<td>VIII. Alternative Pathways of Angiotensin II Formation</td>
<td>424</td>
</tr>
<tr>
<td>References</td>
<td>425</td>
</tr>
</tbody>
</table>

Clinical Trials for Drugs Against Diabetic Neuropathy: Can We Combine Scientific Needs With Clinical Practicalities?

DAN ZIEGLER AND DIETER LUFT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Clinical Impact of Diabetic Polyneuropathy</td>
<td>432</td>
</tr>
<tr>
<td>II. Role of Drug Treatment in Diabetic Polyneuropathy</td>
<td>433</td>
</tr>
<tr>
<td>III. Classification, Diagnosis, and Staging</td>
<td>435</td>
</tr>
<tr>
<td>IV. Outcome Measures</td>
<td>437</td>
</tr>
<tr>
<td>V. Natural History and Risk Factors</td>
<td>440</td>
</tr>
<tr>
<td>VI. Sample Size and Duration of Trials</td>
<td>442</td>
</tr>
<tr>
<td>VII. Reproducibility of Outcome Measures</td>
<td>443</td>
</tr>
<tr>
<td>VIII. Nonspecific Effects of Treatment</td>
<td>445</td>
</tr>
<tr>
<td>IX. Measures of Treatment Effects</td>
<td>447</td>
</tr>
<tr>
<td>X. Generalizability of Overall Results of Randomized Clinical Trials (External Validity)</td>
<td>449</td>
</tr>
<tr>
<td>XI. Reporting of Randomized Clinical Trials</td>
<td>451</td>
</tr>
<tr>
<td>XII. Current State of Pharmacological Treatments Based on Pathogenetic Concepts</td>
<td>451</td>
</tr>
<tr>
<td>XIII. Conclusions</td>
<td>456</td>
</tr>
<tr>
<td>References</td>
<td>457</td>
</tr>
</tbody>
</table>

INDEX | 465 |
CONTENTS OF RECENT VOLUMES | 475 |