Andrei N. Borodin
Paavo Salminen

Handbook of Brownian Motion – Facts and Formulae

Second Edition
2000 Mathematics Subject Classification 60J65, 60J60, 60H05, 60H10, 60J55

A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA

Deutsche Bibliothek Cataloging-in-Publication Data

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained.

© 2002 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Member of the BertelsmannSpringer Publishing Group
Printed on acid-free paper produced from chlorine-free pulp. TCF =
ISBN 3-7643-6705-9

9 8 7 6 5 4 3 2 1 www.birkhauser.ch
CONTENTS

Preface to the first edition ix
Preface to the second edition xi
Notation xiii

Part I: THEORY

Chapter I. Stochastic processes in general 1
1. Basic definitions 1
2. Markov processes, transition functions, resolvents, and generators 3
3. Feller processes, Feller-Dynkin processes, and the strong Markov property 5
4. Martingales 7

Chapter II. Linear diffusions 12
1. Basic facts 12
2. Local time 21
3. Passage times 25
4. Additive functionals and killing 27
5. Excessive functions 32
6. Ergodic results 35

Chapter III. Stochastic calculus 38
1. Stochastic integration with respect to Brownian motion 38
2. The Itô and Tanaka formulae 42
4. Stochastic differential equations – weak solutions 46
5. One-dimensional stochastic differential equations 47
6. The Cameron–Martin–Girsanov transformation of measure 48

Chapter IV. Brownian motion 51
1. Definition and basic properties 51
2. Brownian local time 54
3. Excursions 57
4. Brownian bridge 64
5. Brownian motion with drift 67
6. Bessel processes 71
7. Geometric Brownian motion 76
Chapter V. Local time as a Markov process 81
1. Diffusion local time 81
2. Local time of Brownian motion 84
3. Local time of Brownian motion with drift 90
4. Local time of Bessel process 94
5. Summarizing tables 99

Chapter VI. Differential systems associated to Brownian motion 103
1. The Feynman–Kac formula 103
2. Exponential stopping 105
3. Stopping at first exit time 109
4. Stopping at inverse additive functional 113
5. Stopping at first range time 117

Appendix 1. Briefly on some diffusions 119

Part II: TABLES OF DISTRIBUTIONS OF FUNCTIONALS OF BROWNIAN MOTION AND RELATED PROCESSES

Introduction 145
1. List of functionals 146
2. Comments and references 148

1. Brownian motion 153
1. Exponential stopping 153
2. Stopping at first hitting time 198
3. Stopping at first exit time 212
4. Stopping at inverse local time 229
5. Stopping at first range time 242

2. Brownian motion with drift 250
1. Exponential stopping 250
2. Stopping at first hitting time 295
3. Stopping at first exit time 309
4. Stopping at inverse local time 323
3. Reflecting Brownian motion
1. Exponential stopping
2. Stopping at first hitting time
4. Stopping at inverse local time

4. Bessel process of order ν
1. Exponential stopping, $\nu \geq 0$
2. Stopping at first hitting time, $\nu > 0$
3. Stopping at first exit time, $\nu > 0$
4. Stopping at inverse local time, $\nu > 0$

5. Bessel process of order $1/2$
1. Exponential stopping
2. Stopping at first hitting time
3. Stopping at first exit time
4. Stopping at inverse local time

6. Bessel process of order zero
2. Stopping at first hitting time
3. Stopping at first exit time
4. Stopping at inverse local time

7. Ornstein–Uhlenbeck process
1. Exponential stopping
2. Stopping at first hitting time
3. Stopping at first exit time
4. Stopping at inverse local time

8. Radial Ornstein–Uhlenbeck process
1. Exponential stopping
2. Stopping at first hitting time
3. Stopping at first exit time
4. Stopping at inverse local time

9. Geometric Brownian motion
1. Exponential stopping
2. Stopping at first hitting time
3. Stopping at first exit time
4. Stopping at inverse local time

Appendix 2. Special functions

Appendix 3. Inverse Laplace transforms