Tay-Sachs Disease

Edited by

Robert J. Desnick
Mount Sinai School of Medicine
of New York University
New York, New York

Michael M. Kaback
University of California, San Diego
School of Medicine
San Diego, California
Contents

Contributors xiii
Preface xv

1 Tay-Sachs Disease: From Clinical Description to Molecular Defect 1
Michael M. Kaback and Robert J. Desnick

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. 1880–1960: Clinical, Pathologic, and Genetic Advances</td>
<td>2</td>
</tr>
<tr>
<td>III. 1960–1980: Lysosomes, Biochemical Defect, Prospective Prevention</td>
<td>3</td>
</tr>
<tr>
<td>IV. 1980–Present: The Molecular Era and Therapeutic Horizons</td>
<td>5</td>
</tr>
<tr>
<td>V. Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
</tbody>
</table>

2 Barney Sachs and the History of the Neuropathologic Description of Tay-Sachs Disease 11
Daniel P. Perl

3 Early Epidemiologic Studies of Tay-Sachs Disease 25
Stanley M. Aronson

4 Identification of the Accumulated Ganglioside 33
Lars Svennerholm

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Substance X and Ganglioside</td>
<td>33</td>
</tr>
<tr>
<td>II. N-Acetylgalactosamine is a Ganglioside Component</td>
<td>34</td>
</tr>
<tr>
<td>III. Strandin</td>
<td>35</td>
</tr>
<tr>
<td>IV. Chromatographic Separation of Gangliosides</td>
<td>36</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>V.</td>
<td>Thin-Layer Chromatography—The Method of Choice for Studies of Ganglioside Structure</td>
</tr>
<tr>
<td>VI.</td>
<td>Tay-Sachs Ganglioside</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>5</td>
<td>Discovery of the Hexosaminidase Isoenzymes</td>
</tr>
<tr>
<td></td>
<td>Donald Robinson and John L. Stirling</td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
</tr>
<tr>
<td></td>
<td>II. Fluorigenic Substrates</td>
</tr>
<tr>
<td></td>
<td>III. Mammalian Glycosidases</td>
</tr>
<tr>
<td></td>
<td>IV. Hexosaminidases</td>
</tr>
<tr>
<td></td>
<td>V. Differential Assay for Hexosaminidases A and B</td>
</tr>
<tr>
<td></td>
<td>VI. Structural Relationship between Hexosaminidases A and B</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>6</td>
<td>Tay-Sachs Disease: The Search for the Enzymatic Defect</td>
</tr>
<tr>
<td></td>
<td>Roscoe O. Brady</td>
</tr>
<tr>
<td></td>
<td>I. Historical Overview</td>
</tr>
<tr>
<td></td>
<td>II. Applications</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>7</td>
<td>Discovery of β-Hexosaminidase A Deficiency in Tay-Sachs Disease</td>
</tr>
<tr>
<td></td>
<td>Shintaro Okada and John S. O'Brien</td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
</tr>
<tr>
<td></td>
<td>II. John S. O'Brien's Recollection</td>
</tr>
<tr>
<td></td>
<td>III. Shintaro Okada's Recollection</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>8</td>
<td>The G_m2-Gangliosidoses and the Elucidation of the β-Hexosaminidase System</td>
</tr>
<tr>
<td></td>
<td>Konrad Sandhoff</td>
</tr>
<tr>
<td></td>
<td>I. Amaurotic Idiocy</td>
</tr>
<tr>
<td></td>
<td>II. Glycolipid Analysis of Brains with Amaurotic Idiocy</td>
</tr>
</tbody>
</table>
12 The Search for the Genetic Lesion in Ashkenazi Jews with Classic Tay-Sachs Disease 137
Rachel Myerowitz

13 The β-Hexosaminidase Story in Toronto: From Enzyme Structure to Gene Mutation 145
Don J. Mahuran and Roy A. Gravel
I. Introduction 146
II. Structures of Hexosaminidase A and Hexosaminidase B 146
III. Isolation of cDNA Clones Coding for the α and β Chains 148
IV. Extensive Homology Between the Deduced α and β Primary Structures 149
V. Posttranslational Processing of the Pre-pro-α and Pre-pro-β Chains 149
VI. Structure–Function Relationships 154
VII. Molecular Heterogeneity in Tay-Sachs and Sandhoff Diseases 157
References 160

14 Biosynthesis of Normal and Mutant β-Hexosaminidases 165
Elizabeth F. Neufeld and Alessandra d’Azzo
I. The Normal Biosynthetic Pathway 165
II. Biosynthesis of Mutant β-Hexosaminidases 169
References 170

15 Recognition and Delineation of β-Hexosaminidase α-Chain Variants: A Historical and Personal Perspective 173
Kunihiko Suzuki
I. At the Beginning 173
II. Increasing Complexity 174
III. Era of Molecular Genetics 175
IV. Evolution of B1 Variant 176
V. Genotype–Phenotype Correlation 180
References 182
16 Late-Onset GM2 Gangliosidosis and Other Hexosaminidase Mutations among Jews 185
 Ruth Navon
 I. Adult GM2 Gangliosidosis 185
 II. Tay-Sachs Disease Among Moroccan Jews 192
 III. Heat-Labile β-Hexosaminidase B and the Genotyping of Tay-Sachs Disease 194
 References 196

17 Naturally Occurring Mutations in GM2 Gangliosidosis: A Compendium 199
 Barbara Triggs-Raine, Don J. Mahuran, and Roy A. Gravel
 I. Introduction 199
 II. β-Hexosaminidase A Mutations 201
 III. β-Hexosaminidase B Mutations 210
 IV. GM2A Mutations 215
 V. Structure/Function Relationships of β-Hexosaminidase 215
 References 216

18 Targeting the Hexosaminidase Genes: Mouse Models of the GM2 Gangliosidases 225
 Richard L. Proia

19 Molecular Epidemiology of Tay-Sachs Disease 233
 Neil Risch
 I. Introduction 233
 II. Mutations and Their Frequencies 236
 III. The Demographic History of the Ashkenazim 244
 IV. Statistical Modeling 246
 V. Conclusion 249
 References 250

20 Screening and Prevention in Tay-Sachs Disease: Origins, Update, and Impact 253
 Michael M. Kaback
 I. Program Origins: The Place 253
 II. The Events and the People 254
21 Not Preventing—Yet, Just Avoiding Tay-Sachs Disease 267
Charles R. Scriver

I. Introduction 267
II. Context 268
III. The Patient with the Disease 268
IV. Strategies to Avoid Tay-Sachs Disease 270
V. Tay-Sachs Disease Carrier Testing: An Illustration of “Community Genetics” 271
VI. Conclusion 272
References 273

22 Experiences in Molecular-Based Prenatal Screening for Ashkenazi Jewish Genetic Diseases 275
Christine M. Eng and Robert J. Desnick

I. Introduction 276
II. Common Recessive Diseases in the Ashkenazim 277
III. Sensitivity of Enzymatic and DNA-Based Carrier Screening 281
IV. Experience with Multiple-Option Prenatal Carrier Screening 282
V. Rationale for Multiple-Option Carrier Screening 283
VI. Strategy for Multiple-Option Carrier Screening 284
VII. Enzyme and DNA Testing 285
VIII. Demographics and Test Acceptance 285
IX. Frequency of Detected Carriers 286
X. Detected Carrier Couples Choose Prenatal Diagnosis 287
XI. Importance of Educational Intervention 287
XII. Group Counseling Preferred 288
XIII. Couple Screening Reduces Anxiety 288
XIV. Acceptance and Selection of Prenatal Screening Tests 289
XV. Confidentiality Issues 290
XVI. Lessons Learned and Future Prospects 290
XVII. Type A Niemann-Pick Disease Detectability and Carrier Frequency in the Ashkenazi Population 291
XVIII. Canavan Disease Detectability and Carrier Frequency in the Ashkenazi Population 291
XIX. Multiple-Option Carrier Screening for Five Disorders 292
XX. Summary 293
References 294

23 The Dor Yeshorim Story: Community-Based Carrier Screening for Tay-Sachs Disease 297
Josef Ekstein and Howard Katzenstein
I. Introduction 298
II. Understanding a Community at Risk 298
III. Early Efforts at Screening 301
IV. Mechanics of the Premarital, Anonymous Screening Program 302
V. Findings and Accomplishments 305
VI. Research 308
VII. Can the Dor Yeshorim Model Be Applied to Other Communities? 308
VIII Analytical Laboratories 309
References 310

24 Tay-Sachs Disease and Preimplantation Genetic Diagnosis 311
Christoph Hansis and Jamie Grifo
I. Tay-Sachs Disease 311
II. Preimplantation Genetic Diagnosis 312
References 314

25 Treatment of GM2 Gangliosidosis: Past Experiences, Implications, and Future Prospects 317
Mario C. Rattazzi and Kostantin Dobrenis
I. Introduction 317
II. Early Enzyme Infusion Trials 318
III. Studies in GM2 Gangliosidosis Cats 321
IV. Cell Targeting of Hexosaminidase A 322
V. TTC-HEX A and Neuronal Storage 324
VI. Implications and Open Questions 326
VII. Bone Marrow Transplantation and Enzyme Secretion 327
VIII. Delivery of Macromolecules to the Brain Parenchyma 329
IX. CNS Gene Therapy 330
X. Conclusions 332
References 333

26 Tay-Sachs Disease: Psychologic Care of Carriers and Affected Families 341
Leslie Schweitzer-Miller

27 Future Perspectives for Tay-Sachs Disease 349
Robert J. Desnick and Michael M. Kaback
I. Introduction 349
II. Substrate Deprivation 350
III. Chemical Chaperones 351
IV. Stem Cells 351
V. Oligonucleotide Recombination 352
VI. Genetic Counseling and Psychosocial Support 352
VII. Prevention 353
References 354

Index 357