Table of Contents

CONTENTS, VOLUME I

Preface to the Third Edition
Preface to the First Edition

1. Continuous Population Models for Single Species
 1.1 Continuous Growth Models
 1.2 Insect Outbreak Model: Spruce Budworm
 1.3 Delay Models
 1.4 Linear Analysis of Delay Population Models: Periodic Solutions
 1.5 Delay Models in Physiology: Periodic Dynamic Diseases
 1.6 Harvesting a Single Natural Population
 1.7 Population Model with Age Distribution
 Exercises

2. Discrete Population Models for a Single Species
 2.1 Introduction: Simple Models
 2.2 Cobwebbing: A Graphical Procedure of Solution
 2.3 Discrete Logistic-Type Model: Chaos
 2.4 Stability, Periodic Solutions and Bifurcations
 2.5 Discrete Delay Models
 2.6 Fishery Management Model
 2.7 Ecological Implications and Caveats
 2.8 Tumour Cell Growth
 Exercises

3. Models for Interacting Populations
 3.1 Predator–Prey Models: Lotka–Volterra Systems
 3.2 Complexity and Stability
 3.3 Realistic Predator–Prey Models
 3.4 Analysis of a Predator–Prey Model with Limit Cycle Periodic Behaviour: Parameter Domains of Stability
 3.5 Competition Models: Competitive Exclusion Principle
3.6 Mutualism or Symbiosis ... 99
3.7 General Models and Cautionary Remarks 101
3.8 Threshold Phenomena .. 105
3.9 Discrete Growth Models for Interacting Populations 109
3.10 Predator–Prey Models: Detailed Analysis 110
Exercises ... 115

4. Temperature-Dependent Sex Determination (TSD) 119
 4.1 Biological Introduction and Historical Asides on the Crocodilia ... 119
 4.2 Nesting Assumptions and Simple Population Model 124
 4.3 Age-Structured Population Model for Crocodilia 130
 4.4 Density-Dependent Age-Structured Model Equations 133
 4.5 Stability of the Female Population in Wet Marsh Region I ... 135
 4.6 Sex Ratio and Survivorship 137
 4.7 Temperature-Dependent Sex Determination (TSD) Versus Genetic Sex Determination (GSD) 139
 4.8 Related Aspects on Sex Determination 142
 Exercise .. 144

5. Modelling the Dynamics of Marital Interaction: Divorce Prediction and Marriage Repair 146
 5.1 Psychological Background and Data: Gottman and Levenson Methodology ... 147
 5.2 Marital Typology and Modelling Motivation 150
 5.3 Modelling Strategy and the Model Equations 153
 5.4 Steady States and Stability 156
 5.5 Practical Results from the Model 164
 5.6 Benefits, Implications and Marriage Repair Scenarios 170

6. Reaction Kinetics .. 175
 6.1 Enzyme Kinetics: Basic Enzyme Reaction 175
 6.2 Transient Time Estimates and Nondimensionalisation 178
 6.3 Michaelis–Menten Quasi-Steady State Analysis 181
 6.4 Suicide Substrate Kinetics 188
 6.5 Cooperative Phenomena 197
 6.6 Autocatalysis, Activation and Inhibition 201
 6.7 Multiple Steady States, Mushrooms and Isolas 208
 Exercises ... 215

7. Biological Oscillators and Switches 218
 7.1 Motivation, Brief History and Background 218
 7.2 Feedback Control Mechanisms 221
 7.3 Oscillators and Switches with Two or More Species: General Qualitative Results 226
 7.4 Simple Two-Species Oscillators: Parameter Domain Determination for Oscillations 234
7.5 Hodgkin–Huxley Theory of Nerve Membranes:
FitzHugh–Nagumo Model ... 239

7.6 Modelling the Control of Testosterone Secretion and
Chemical Castration .. 244

Exercises .. 253

8. BZ Oscillating Reactions 257

8.1 Belousov Reaction and the Field–Körös–Noyes (FKN) Model 257

8.2 Linear Stability Analysis of the FKN Model and Existence
of Limit Cycle Solutions ... 261

8.3 Nonlocal Stability of the FKN Model 265

8.4 Relaxation Oscillators: Approximation for the
Belousov–Zhabotinskii Reaction 268

8.5 Analysis of a Relaxation Model for Limit Cycle Oscillations
in the Belousov–Zhabotinskii Reaction 271

Exercises .. 277

9. Perturbed and Coupled Oscillators and Black Holes 278

9.1 Phase Resetting in Oscillators .. 278

9.2 Phase Resetting Curves .. 282

9.3 Black Holes .. 286

9.4 Black Holes in Real Biological Oscillators 288

9.5 Coupled Oscillators: Motivation and Model System 293

9.6 Phase Locking of Oscillations: Synchronisation in Fireflies 295

9.7 Singular Perturbation Analysis: Preliminary Transformation ... 299

9.8 Singular Perturbation Analysis: Transformed System 302

9.9 Singular Perturbation Analysis: Two-Time Expansion 305

9.10 Analysis of the Phase Shift Equation and Application
to Coupled Belousov–Zhabotinskii Reactions 310

Exercises .. 313

10. Dynamics of Infectious Diseases 315

10.1 Historical Aside on Epidemics 315

10.2 Simple Epidemic Models and Practical Applications 319

10.3 Modelling Venereal Diseases 327

10.4 Multi-Group Model for Gonorrhea and Its Control 331

10.5 AIDS: Modelling the Transmission Dynamics of the Human
Immunodeficiency Virus (HIV) 333

10.6 HIV: Modelling Combination Drug Therapy 341

10.7 Delay Model for HIV Infection with Drug Therapy 350

10.8 Modelling the Population Dynamics of Acquired Immunity to
Parasite Infection .. 351

10.9 Age-Dependent Epidemic Model and Threshold Criterion 361

10.10 Simple Drug Use Epidemic Model and Threshold Analysis 365

10.11 Bovine Tuberculosis Infection in Badgers and Cattle 369
10.12 Modelling Control Strategies for Bovine Tuberculosis in Badgers and Cattle 379
Exercises 393

11. Reaction Diffusion, Chemotaxis, and Nonlocal Mechanisms 395
11.1 Simple Random Walk and Derivation of the Diffusion Equation 395
11.2 Reaction Diffusion Equations 399
11.3 Models for Animal Dispersal 402
11.4 Chemotaxis 405
11.5 Nonlocal Effects and Long Range Diffusion 408
11.6 Cell Potential and Energy Approach to Diffusion and Long Range Effects 413
Exercises 416

12. Oscillator-Generated Wave Phenomena 418
12.1 Belousov–Zhabotinskii Reaction Kinematic Waves 418
12.2 Central Pattern Generator: Experimental Facts in the Swimming of Fish 422
12.3 Mathematical Model for the Central Pattern Generator 424
12.4 Analysis of the Phase Coupled Model System 431
Exercises 436

13.1 Background and the Travelling Waveform 437
13.2 Fisher–Kolmogoroff Equation and Propagating Wave Solutions 439
13.3 Asymptotic Solution and Stability of Wavefront Solutions of the Fisher–Kolmogoroff Equation 444
13.4 Density-Dependent Diffusion-Reaction Diffusion Models and Some Exact Solutions 449
13.5 Waves in Models with Multi-Steady State Kinetics: Spread and Control of an Insect Population 460
13.6 Calcium Waves on Amphibian Eggs: Activation Waves on Medaka Eggs 467
13.7 Invasion Wavespeeds with Dispersive Variability 471
13.8 Species Invasion and Range Expansion 478
Exercises 482

14. Use and Abuse of Fractals 484
14.1 Fractals: Basic Concepts and Biological Relevance 484
14.2 Examples of Fractals and Their Generation 487
14.3 Fractal Dimension: Concepts and Methods of Calculation 490
14.4 Fractals or Space-Filling? 496

Appendices 501

A. Phase Plane Analysis 501
B. Routh-Hurwitz Conditions, Jury Conditions, Descartes’ Rule of Signs, and Exact Solutions of a Cubic

B.1 Polynomials and Conditions ... 507
B.2 Descartes’ Rule of Signs ... 509
B.3 Roots of a General Cubic Polynomial ... 510

Bibliography ... 513

Index .. 537