Advances in Cancer Research

Volume 79

Edited by

George F. Vande Woude
Division of Basic Sciences
National Cancer Institute
National Institutes of Health
Bethesda, Maryland

George Klein
Microbiology and Tumor Biology Center
Karolinska Institutet
Stockholm, Sweden

ACADEMIC PRESS
A Harcourt Science and Technology Company

San Diego San Francisco New York Boston London Sydney Tokyo
Contents

Contributors to Volume 79 ix

New Paradigms for the Treatment of Cancer: The Role of Anti-Angiogenesis Agents
Julie M. Cherrington, Laurie M. Strawn, and Laura K. Shawver

I. Introduction 2
II. Growth Factors and Receptor Tyrosine Kinases 4
III. Platelet-Derived Endothelial Cell Growth Factor/Thymidine Phosphorylase 16
IV. Matrix Metalloproteinases 18
V. Plasminogen Activator/Plasmin System 24
VI. Integrins 26
VII. Other 28
VIII. Conclusions 29
References 30

The Hepatocyte Growth Factor/Met Pathway in Development, Tumorigenesis, and B-Cell Differentiation
Robbert van der Voort, Taher E. I. Taher, Patrick W. B. Derksen, Marcel Spaargaren, Ronald van der Neut, and Steven T. Pals

I. Introduction 39
II. Structure and Function of HGF and Met 40
III. HGF/Met in B-Cell Development and Neoplasia 68
IV. Summary 75
References 75

Clinical Targets for Anti-Metastasis Therapy
Ann F. Chambers, Ian C. MacDonald, Eric E. Schmidt, Vincent L. Morris, and Alan C. Groom

I. Introduction 92
II. Metastasis: Clinical and Experimental Considerations 93
III. New Tools for Studying the Metastatic Process 95
IV. New Insights into the Metastatic Process 100
V. Targets for Anti-Metastasis Therapy: Clinical and Biological Considerations 110
VI. Conclusions 118
References 118
Animal Models of Melanoma: Recent Advances and Future Prospects
Nabeel Bardeesy, Kwok-Kin Wong, Ronald A. DePinho, and Lynda Chin

I. Introduction 123
II. Clinical Aspects of Melanoma 124
III. Molecular Basis for Melanoma 127
IV. Role of Receptor Tyrosine Kinases 135
V. Model Systems for Melanoma 139
VI. Conclusions 149
References 150

The Indispensable Role of Microenvironment in the Natural History of Low-Grade B-Cell Neoplasms
Paolo Ghia and Federico Caligaris-Cappio

I. Introduction 158
II. More Characters Are Coming on the Stage 158
III. Conclusions 170
References 170

Epstein-Barr Virus Latency: LMP2, A Regulator or Means for Epstein-Barr Virus Persistence?
Richard Longnecker

I. Introduction 176
II. EBV Latency 177
III. Latent Membrane Protein 2 178
IV. B-Cell Signal Transduction and LMP2A 183
V. LMP2A Site-Specific Mutant LCLs 185
VI. Model of LMP2A and LMP2B Function in Vitro 189
VII. In Vivo Models of LMP2A Function 191
VIII. LMP2 Function in Epithelial Cells 192
IX. Discussion 193
References 197

Biochemistry and Pathological Importance of Mucin-Associated Antigens in Gastrointestinal Neoplasia
Stephan E. Baldus and Franz-Georg Hanisch

I. Introduction 201
II. Biochemistry and Molecular Biology of Mucins 202
III. Alterations of Mucin Peptide and Mucin Glycosylation during Carcinogenesis 216
IV. Expression of Mucin-Associated Antigens in Gastric Tissues 219
V. Expression in Colorectal Tissues 224
Studies on Polyomavirus Persistence and Polyomavirus-Induced Tumor Development in Relation to the Immune System

Zsofia Berke and Tina Dalianis

I. Introduction 249
II. Initial Studies on Polyomavirus Infection and Polyoma-Specific Immune Responses in Vivo and in Vitro 250
III. Molecular Characteristics of Polyomavirus 252
IV. Polyomavirus Tumor-Specific Transplantation Antigens 253
V. Factors Influencing Polyomavirus Persistence and Polyomavirus-Induced Tumor Development 254
VI. Studies on Polyomavirus Persistence and Polyomavirus-Induced Tumor Development in Immunocompetent and Immunodeficient Mice 256
VII. Concluding Remarks 271
VIII. Future Prospects 273

References 273