Batten Disease: Diagnosis, Treatment, and Research

Edited by
Krystyna E. Wisniewski
Nanbert Zhong
New York State Institute for Basic Research in Developmental Disabilities
Staten Island, New York

ACADEMIC PRESS
A Harcourt Science and Technology Company
San Diego San Francisco New York
Boston London Sydney Tokyo
Contents

Contributors xi
Preface xiii

1 Neuronal Ceroid Lipofuscinoses: Classification and Diagnosis 1
Krystyna E. Wisniewski, Elizabeth Kida, Adam A. Golabek, Wojciech Kaczmarski, Fred Connell, and Nan Zhong

I. Introduction 3
II. Current Classification of NCLs 10
III. CLN1. Diagnostic Criteria and Phenotype-Genotype Correlation 12
IV. CLN2. Classic Late-Infantile NCL 16
V. CLN3. Juvenile NCL 19
VI. CLN4. Adult NCL 24
VII. CLN5. Finnish Late-Infantile Variant 24
VIII. CLN6. Variant Late-Infantile Gypsy/Indian 25
IX. CLN7. Turkish Variant Late-Infantile NCL 25
X. CLN8. Northern Epilepsy 29
XI. Summary 29
References 30

2 Cellular Pathology and Pathogenic Aspects of Neuronal Ceroid Lipofuscinoses 35
Elizabeth Kida, Adam A. Golabek, and Krystyna E. Wisniewski

I. Introduction 36
II. CLN1. Infantile Form of NCL: Deficiency of Palmitoyl-Protein Thioesterase 1 37
III. CLN2. The Classic Late-Infantile NCL: Deficiency of Tripeptidyl-Peptidase I 42
IV. CLN3. Juvenile Form of NCL: Genetic Defect of Lysosomal Membrane Protein 49
3 Positional Candidate Gene Cloning of CLN1
Sandra L. Hofmann, Amit K. Das, Jui-Yun Lu, and Abigail A. Soyombo

I. Introduction 70
II. Linkage Disequilibrium Mapping of the CLN1 Locus in the Finnish Population 71
III. Palmitoyl-Protein Thioesterase Defines a New Pathway in Lysosomal Catabolism 72
IV. Enzymology of PPT 73
V. Posttranslational Processing and Lysosomal Targeting of PPT 75
VI. The Physiological Role of PPT 77
VII. Palmitoyl-Protein Thioesterase-2 (PPT2) 79
VIII. The PPT cDNA and Gene 79
IX. The Molecular Genetics of CLN1/PPT Deficiency 81
X. Laboratory Diagnosis of PPT Deficiency 86
XI. Prospects for Cause-Specific Treatment of PPT Deficiency 86
References 88

4 Biochemistry of Neuronal Ceroid Lipofuscinoses
Mohammed A. Junaid and Raju K. Pullarkat

I. Introduction 94
II. Genetic Defects 95
III. NCL are Lysosomal Storage Diseases 99
IV. Remaining Issues and Future Directions 101
References 103

5 Positional Cloning of the JNCL Gene, CLN3
Terry J. Lerner

I. Introduction 107
II. CLN3 Maps to Chromosome 16 108
III. A Subunit 9 Gene Is Not CLN3 109
IV. Refined Localization of CLN3 109
References 109
6 Studies of Homogenous Populations: CLN5 and CLN8 123
Susanna Ranta, Minna Savukoski, Pirkko Santavuori, and Matti Haltia

I. Introduction 125
II. Clinical Data 125
III. Neurophysiology 127
IV. Neuroradiology 128
V. Morphology, Cytochemistry, and Biochemistry 128
VI. Molecular Genetics and Cell Biology 132
VII. Diagnosis 135
VIII. Treatment 137
IX. Mouse Homolog for CLN8 137
References 138

7 Molecular Genetic Testing for Neuronal Ceroid Lipofuscinoses 141
Nanbert Zhong

I. Introduction 142
II. Specimens Required for Genetic Testing 143
III. Molecular Genetic Testing for JNCL 144
IV. Molecular Genetic Testing for LINCL and INCL 149
V. Molecular Screening of Carrier Status in NCL Families 151
VI. Prenatal Diagnostic Testing for NCL 152
VII. Important Issues in the Molecular Genetic Testing 154
References 156
8 Genetic Counseling in the Neuronal Ceroid Lipofuscinoses 159
Susan Sklower Brooks
 I. Introduction 159
 II. Inheritance 160
 III. Genetics 160
 IV. Diagnostic Confirmation 161
 V. Genetic Counseling 161
 VI. Carrier Screening 162
 VII. Reproductive Options 164
 VIII. Conclusion 165
 References 166

9 Neurotrophic Factors as Potential Therapeutic Agents in Neuronal Ceroid Lipofuscinosis 169
Jonathan D. Cooper and William C. Mobley
 I. Introduction 170
 II. Mouse Models of NCLs 170
 III. Characterization of the CNS of Mouse Models of NCLs 171
 IV. Neurotrophic Factors as Potential Therapeutic Agents in Neurodegenerative Disorders?—The Neurotrophic Factor Hypothesis 173
 V. NTF Expression and Actions beyond the “Neurotrophic Factor Hypothesis” 176
 VI. Failure of NTF Signaling—A Cause of Neuronal Dysfunction and Degeneration? 177
 VII. Treatment with IGF-1—Implications for the Treatment of NCLs 178
 VIII. Toward Clinical Trials of NTFs 179
 References 179

10 Animal Models for the Ceroid Lipofuscinoses 183
Martin L. Katz, Hisashi Shibuya, and Gary S. Johnson
 I. The Need for Animal Models 184
 II. The Human Disorders 184
 III. Naturally Occurring Ceroid Lipofuscinosis in Animals as Models for the Human Disorders 186
IV. Animal Models Created through Molecular Genetic Manipulation 195
V. Future Directions 198
References 199

11 Experimental Models of NCL: The Yeast Model 205
David A. Pearce

I. Introduction 205
II. Yeast as a Model for JNCL 206
III. What Does Btn1p Do? 210
IV. Yeast as a Therapeutic Model for JNCL 213
V. A Yeast Model for INCL 214
References 215

12 Outlook for Future Treatment 217
Nanbert Zhong and Krystyna E. Wisniewski

I. Molecular Cloning for CLN4, CLN6, and CLN7 218
II. Characterization of Native Substrates for CLN-Encoded Lysosomal Enzymes 218
III. Proteomic Studies of CLN-Encoded Proteins 219
IV. Uncovering the Pathogenesis of the NCLs 219
V. Potential Drugs in Experimental Models May Eventually Lead to Clinical Trials in NCL-Affected Patients 220
VI. Gene Therapy 221
References 222

Appendix: Batten Support Groups 225

United States of America 225
Canadian Chapter 230
European Support Groups 230
Elsewhere 235

Index 237