BIOPHYSICAL CHEMISTRY

PART II

TECHNIQUES FOR THE STUDY OF BIOLOGICAL STRUCTURE AND FUNCTION

Charles R. Cantor  Paul R. Schimmel
COLUMBIA UNIVERSITY  MASSACHUSETTS INSTITUTE OF TECHNOLOGY

W. H. FREEMAN AND COMPANY
New York
Contents in detail of Part II

Chapter 7 Absorption Spectroscopy 349

7-1 Basic Principles 349
   The range of techniques 349
   Qualitative description of spectroscopy 350
   Calculation of properties of molecules by quantum mechanics 350
   Description of a molecule by wavefunctions 351
   Operators and values of observable quantities 353
   The Schrödinger equation 354
   Interaction of light with molecules 356
   Transition dipoles 359
   Box 7-1 Wavefunctions as vectors, and operators as matrices 360
   Parameters available from spectral measurements 361

7-2 Absorption Spectroscopy of Electronic States 361
   Energy states of molecules 361
   The extinction coefficient 364
   Box 7-2 Extinction coefficients and cross sections 366
   The extinction coefficient in calculating molecular properties 367
   Linear dichroism from oriented samples 368
   Spectral properties of a simple molecule: formaldehyde 370

7-3 Spectroscopic Analysis of Biopolymers 374
   Restricted wavelength range of biopolymers 374
   Peptide-group domination of far UV absorption for proteins 375
   Aromatic amino acid domination of near UV absorption for proteins 376
   Effects of prosthetic groups 379
Estimates of protein concentration from UV absorbance 380
Nucleic acid absorption dominated by bases 381

7-4 Effects of Conformation on Absorption 385
Spectrum sensitivity to local environment 386
Interactions between different chromophores 390

• A dimer of noninteracting monomers 391
• A dimer of interacting monomers 392
How to analyze a dimer spectrum 395
Numbers of bands and chromophores 398
Hypochromism in chromophore aggregates 399

Box 7-3 Theory of hypochromism 402
Determination of chromophore orientation by linear dichroism 404

Chapter 8 Other Optical Techniques 409

8-1 Optical Activity 409
Experimental detection of optical activity 409

Box 8-1 Typical magnitudes in optical activity measurements 412
Relation between ORD and CD 413
Physical origins 414

Box 8-2 Vector products 417

• Calculation of the CD of a dimer 418
Semiempirical computation of protein optical activity 425
Semiempirical calculation of nucleic acid optical activity 428
Empirical applications of optical activity 431
Variations of optical activity measurements 432

8-2 Fluorescence Spectroscopy 433
Basic principles of fluorescence 433
Factors governing fluorescence intensity 436
Experimental measurements 439
Properties of typical fluorescent groups 443
Sensitivity of fluorescence to the environment 444
Singlet–singlet energy transfer 448
Measuring interchromophore distances
  from energy-transfer efficiencies 451

Box 8-3 The Förster theory of singlet–singlet energy transfer 452
Fluorescence polarization 454
Polarization of rigid systems 455

Box 8-4 Polarization and anisotropy 458

• Effect of molecular motion 459
The Perrin equations and steady-state polarization measurements 463

8-3 Infrared and Raman Spectroscopy 466
Principles of infrared spectroscopy 466
Vibrational spectra of biopolymers 468
Raman spectroscopy 472

Chapter 9 Introduction to Magnetic Resonance 481

9-1 Resonance Techniques and Their Applications 481

9-2 General Principles of Nuclear Magnetic Resonance (NMR) 482
Precession of a spinning charged body in a magnetic field 483
Box 9-1 Magnetic moments 485
Nuclear magnetic moments 486
Constraints on nuclear magnetic moments 488
Physical picture of an NMR experiment: a classical analogy 489
Box 9-2 Relative sensitivity 489

9-3 Bloch Equations 493

9-4 Important Implications of the Bloch Equations 497
Signal strength 497
Effects of large values of the longitudinal relaxation time ($T_1$) 498
Effects of fluctuating local fields and molecular environment on $T_1$ 499
Effects of $T_1$ and $T_2$ on line widths 500
Factors affecting $T_2$ 502
• Measurement of $T_1$ and $T_2$ by pulse methods 503
• Absorption spectrum as the Fourier transform of the free induction decay 505

9-5 Features of NMR Spectra 506
Chemical shifts 506
Achieving high resolution 508
Spin–spin splitting of resonance lines 510
Study of biological complexes with paramagnetic probes 513
Use of NMR to monitor rate processes 514

9-6 NMR Spectra of Biological Systems 516
Proton magnetic resonance spectra of proteins 516
$^{13}$C NMR spectra of proteins 519
$^{31}$P NMR studies 520
$^{19}$F as a probe for biochemical systems 521
NMR spectra of nucleic acids 522

9-7 Electron Paramagnetic Resonance (EPR) 525
Similarities between EPR and NMR 525
Hyperfine interaction 525
Contact interaction 527
Anisotropic hyperfine interaction 529
Box 9-3 Magnetic field near a magnetic dipole 530
g-Factor anisotropy 533
EPR study of metal-containing proteins 533
Spin-label EPR studies 534

Chapter 10 Size and Shape of Macromolecules 539

10-1 Methods of Direct Visualization 539
Molecular electron microscopy 539
Minimizing drying and shrinking artifacts 541
• Using symmetry to enhance the electron microscopic image 542
High-resolution autoradiography 547
X-ray diffraction 548

10-2 Macromolecules as Hydrodynamic Particles 549
A survey of techniques 549
Macromolecular volumes and hydration 550
Hydration treated thermodynamically 552
Frictional properties of macromolecules in solution 555
Relationship between friction and molecular size 557
Effect of shear on measured viscosity 646
Effect of solute molecules on viscosity 648
Effect of molecular shape on viscosity 650
Using viscosity to estimate molecular weight 653
Some applications of viscosity measurements 654
Viscoelastic relaxation 655

12-2 Techniques Based on Rotational Motion 659
  Measuring flow orientation by linear dichroism 660
  Measuring flow orientation by linear birefringence 663
  Orientation in electric fields 665
  Dielectric dispersion 668
  Other ways of measuring and interpreting rotational motions 668

12-3 Molecular-Sieve Chromatography 670
  Principles of gel filtration 670
  Analysis of the shape of the eluting bands 672
  Molecular-sieve behavior and macromolecular size and shape 674

12-4 Electrophoresis 676
  Predicting electrophoretic mobility 676
  Applications of electrophoresis 678
  Electrophoresis in sodium dodecylsulphate to obtain molecular weights 679

Chapter 13 X-Ray Crystallography 687

13-1 X-Ray Scattering by Atoms and Molecules 687
  Outline and limitations of our treatment 687
  X-rays: short-wavelength electromagnetic radiation 688
  Parameters that describe an electromagnetic wave 688
  Geometry of an x-ray scattering experiment 690
  Box 13-1 Relationship between sines, cosines, and exponentials 690
  Scattering as a function of electron position 693
  X-ray scattering in terms of Fourier transforms 694
  An example of the properties of Fourier transforms 694
  Measuring the structure factor 695
  Box 13-2 Properties of Fourier transforms 696
  Box 13-3 The Dirac delta function 698
  A requirement for heterogeneities in electron density 700
  Scattering from a single atom at the origin 701
  Scattering from atoms not located at the origin 702

13-2 X-Ray Diffraction 703
  Interference fringes from sets of atoms 703
  Calculation of x-ray diffraction from a one-dimensional array 704
  Discontinuous diffraction pattern from a one-dimensional array 706
  Box 13-4 Optical diffraction patterns from arrays 708
  Sampling the scattering from any atom or molecule in a periodic array 711
  X-ray scattering actually observed in the laboratory frame 711
  X-ray scattering from a two-dimensional array of atoms 715
  X-ray diffraction from a three-dimensional array of atoms 716
  X-ray diffraction from a three-dimensional molecular crystal 720
  A repeating structure as a convolution 720
The Fourier transform of a convolution 723
Convolutions in the computation of x-ray scattering 724
Calculation of x-ray scattering from a molecular crystal
using convolutions 726
Bragg’s law of diffraction 727

13-3 Properties of Crystals 729
Restrictions on possible crystal lattices 730
Symmetry properties of molecules and crystals 734
Space groups available to biological molecules 735
Determination of the dimensions of the crystal lattice 737
The relationship between the crystal lattice and the reciprocal lattice 738
Determination of the space group 741
Crystallographic estimation of molecular weight 741
Using the space group for information on macromolecule symmetry 743
Varying scattering geometry to measure diffraction pattern 743
Several methods for collecting scattering data 746
The limiting sphere of the reciprocal lattice 748
Limitations on the resolution of structures calculated
from x-ray diffraction data 748
Experimental limitations on resolution 751

Box 13-5 Projections of electron density distribution 752

13-4 Determination of Molecular Structure by X-Ray Crystallography 754
The phase problem 754
Phases are more important than amplitudes 754
General considerations in solving a crystal structure 755
Steps in determining the structure of a small molecule 756
Calculating the Patterson function from measured scattering 757
Periodic repetition of Patterson functions 760
Correspondence of peaks in Patterson function and vectors
between atoms 761
Using Patterson maps to locate heavy atoms in small molecules 761
Testing agreement between calculated structure and observed data 763

13-5 Determining the Structure of a Macromolecule 763
The method of multiple isomorphous replacements 763
Preparation and properties of macromolecular crystals 764
Preparation of isomorphous heavy-atom derivatives 765
Structure factors for heavy-atom isomorphous derivatives 768
Location of heavy atoms by a difference Patterson map 769
Using centrosymmetric projections to locate heavy atoms 771
Using heavy-atom positions to estimate phases of the structure factor 772

Box 13-6 An example of the interpretation
of a difference Patterson projection 774
Phase estimates with a center of symmetry 777
Narrowing heavy-atom positions with parent-crystal phase estimates 777
A least-squares refinement of a structural model 778
Least-squares refinement of heavy-atom positions 780
Anomalous dispersion of heavy atoms 781
Interpretation of the electron density map 781
Energetics of protein conformations in interpretation
of the electron density map 785
Difference Fourier syntheses in studying
ligand–macromolecule interactions 785
Chapter 14 Other Scattering and Diffraction Techniques 793

14-1 X-Ray Fiber Diffraction 793
- X-ray scattering expected from fibers 793
- Calculation of scattering from a helix 795
- The structure factor of a helical line in cylindrical coordinates 797
- Discontinuous structure factor of a helix 798
- X-shaped pattern of scattering from a helical line 799
- The structure factor of a discontinuous helix 800
- The structure factor of a helix with an integral number of residues per turn 802
- The structure factor of a helix with a nonintegral number of residues per turn 803
- X-ray scattering intensity from a rotationally averaged helix 804
- A model for the \( \alpha \) helix 805
- X-ray scattering from a real \( \alpha \) helix 806
- Effect of intermolecular packing on the \( \alpha \)-helix diffraction pattern 808
- X-ray scattering from nucleic acid fibers 809

14-2 Solution X-Ray Scattering 811
- Computing solution scattering by averaging over all molecular orientations 811
- Determining molecular weight and radius of gyration 812
- Using wider-angle scattering to evaluate models of molecular structures 814
- Box 14-1 Fourier sine transforms 816
- Computing a radial Patterson function from solution scattering data 817
- Extended x-ray absorption fine structure (EXAFS) 818

14-3 Scattering of Other Types of Radiation 819
- The useful wavelength range of various types of radiation 819

14-4 Electron Microscopy 820
- Measuring electron diffraction of a solid with the electron microscope 820
- Determining molecular structure in the electron microscope 822
- A mathematical treatment of electron diffraction 823

14-5 Neutron Scattering 829
- Neutron and x-ray scattering compared 829
- Locating hydrogens by neutron diffraction of crystals 830
- Solvent contrast in neutron and x-ray scattering 831
- Solvent contrast effect on the apparent radius of gyration 832
- Covalent deuterium as a neutron label 834
- Box 14-2 Effect of contrast on the appearance of an object 834

14-6 Light Scattering 838
- Single molecules much smaller than the wavelength 838
- Effect of polarization on angular distribution of scattered light 839
- Populations of molecules much smaller than the wavelength 839
- Molecules comparable in size to the wavelength 841
- Other types of light scattering 842

Appendix A Review of Elementary Matrix Algebra A-1
Appendix B Answers to Problems A-7
Index to Parts I and II I-1