Bernard Valeur · Jean-Claude Brochon (Eds.)

New Trends in Fluorescence Spectroscopy

Applications to Chemical and Life Sciences

With 187 Figures and 39 Tables

Springer
Fluorescence spectroscopy, fluorescence imaging and fluorescent probes are indispensable tools in numerous fields of modern medicine and science, including molecular biology, biophysics, biochemistry, clinical diagnosis and analytical and environmental chemistry. Applications stretch from spectroscopy and sensor technology to microscopy and imaging, to single molecule detection, to the development of novel fluorescent probes, and to proteomics and genomics. The Springer Series on Fluorescence aims at publishing state-of-the-art articles that can serve as invaluable tools for both practitioners and researchers being active in this highly interdisciplinary field. The carefully edited collection of papers in each volume will give continuous inspiration for new research and will point to exciting new trends.

ISSN 1617-1306
ISBN 3-540-67779-8
Springer-Verlag Berlin Heidelberg New York

Library of Congress Cataloging-in-Publication Data
New trends in fluorescence spectroscopy : applications to chemical and life science / Bernard Valeur, Jean-Claude Brochon (eds.).
p.cm. - (Springer series on fluorescence ; 1), Includes bibliographical references and index. ISBN 3540677798
I. Fluorescence spectroscopy. I. Valeur, Bernard, 1944-. II. Brochon, Jean-Claude, 1944-. III. Series.
QD96.F56 N46 2001
543'.08584--dc21

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Media GmbH
http://www.springer.de
© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Fotosatz-Service Köhler GmbH, Würzburg
Production editor: Christiane Messerschmidt, Rheinau
Cover: design & production, Heidelberg
Printed on acid-free paper SPF: 10736069 02/3020 – 5 4 3 2 1 0
Contents

Part 1 Historical Aspects of Fluorescence

1 Introduction: On the Origin of the Terms Fluorescence, Phosphorescence, and Luminescence 3
B. VALEUR
References .. 6

2 Pioneering Contributions of Jean and Francis Perrin to Molecular Luminescence 7
M.N. BERBERAN-SANTOS
2.1 Introduction .. 7
2.2 Biographical Sketches of Jean Perrin and Francis Perrin .. 9
2.3 The Perrin-Jablonski Diagram 18
2.3.1 Jablonski Diagram 19
2.3.2 États Métastables – Phosphorescence 20
2.4 Resonance Energy Transfer 22
2.5 Fluorescence Polarization 25
2.6 Concluding Remarks 28
2.7 Bibliographical Notes 30
References .. 30

3 The Seminal Contributions of Gregorio Weber to Modern Fluorescence Spectroscopy 35
D.M. JAMESON
3.1 Overview ... 35
3.2 Early Years .. 36
3.3 Cambridge ... 36
3.4 Francis Perrin's Influence 37
3.5 Ph.D. Thesis .. 38
3.6 Postdoctoral ... 40
3.7 Sheffield ... 42
3.8 Intrinsic Protein Fluorescence 42
3.9 Red-Edge Effects 44
3.10 EEM .. 44
3.11 Brandeis .. 45
Part 2 Fluorescence of Molecular and Supramolecular Systems

4 Investigation of Femtosecond Chemical Reactivity by Means of Fluorescence Up-Conversion

J.-C. Miaoloq, T. Gustavsson

4.1 Nanosecond and Picosecond Time-Resolved Fluorescence Techniques
 4.1.1 Phase Modulation Spectroscopy
 4.1.2 Time Correlated Single Photon Counting
 4.1.3 Streak Cameras for Time-Domain Measurements

4.2 Femtosecond Emission Spectroscopy by Time-Gated Up-Conversion
 4.2.1 Historical Background of the Time-Gated Up-Conversion Technique
 4.2.2 Principle of the Time-Gated Up-Conversion Technique
 4.2.2.1 Phase Matching Conditions
 4.2.2.2 Quantum Efficiency for Up-Conversion
 4.2.2.3 Group Velocity Effects
 4.2.3 Experimental Setup

4.3 Time-Resolved Spectroscopy
 4.3.1 Solvation Processes
 4.3.1.1 Time-Dependent Fluorescence Stokes Shift (TDFSS). Non-Specific Solvation
 4.3.1.2 Specific Solvation: Role of the Structure and the Charge of the Probe
 4.3.1.3 Specific Solvation: Hydrogen Bond Dynamics
 4.3.1.4 Isotope Effect
 4.3.1.5 Spectral Narrowing in the 10 ps Time Scale
 4.3.2 Photoinduced Intramolecular Charge Transfer
 4.3.3 Intermolecular Electron Transfer
4.3.4 Intramolecular Proton Transfer

4.3.5 S₂→S₁ Internal Conversion

4.3.6 Biological Systems

4.4 Conclusions

References

5 Spectroscopic Investigations of Intermolecular Interactions in Supercritical Fluids

M.A. Kane, S.N. Daniel, E.D. Niemeyer, F.V. Bright

5.1 Introduction

5.2 Instrumentation

5.3 Sample Preparation and Precautions

5.4 Selected Applications

5.5 Laser Flash Photolysis

5.6 Basic Picture Revealed by These Studies

5.7 The Future

References

6 Space and Time Resolved Spectroscopy of Two-Dimensional Molecular Assemblies

6.1 Introduction

6.1.1 Motivation

6.1.2 Models

6.2 Experimental

6.3 Results and Discussion

6.3.1 Inhomogeneous Multilayers: RB18 and ARA

6.3.2 Homogeneous Multilayers: SRH+ARA

6.3.3 Multilayers of CV18 and ARA or DPPA

6.3.3.1 CV18 in DPPA

6.3.3.2 Cd-Arachidate Multilayers

6.3.4 Intralayer Quenching of PYR18 by CV18

6.4 Conclusions

References

7 From Cyanines to Styryl Bases – Photophysical Properties, Photochemical Mechanisms, and Cation Sensing Abilities of Charged and Neutral Polymethinic Dyes

W. Rettig, K. Rurack, M. Szepan

7.1 Introduction

7.2 Cyanine Dyes

7.2.1 Photophysical Model Mechanisms

7.2.2 Complexation Properties

7.3 Styryl Dyes

7.3.1 Photophysical Model Mechanisms
10.2 Principles .. 188
10.3 PCT Sensors Based on the Interaction Between
the Bound Cation and an Electron-Donating Group ... 190
 10.3.1 Crown-Containing PCT Sensors 190
 10.3.2 Chelating PCT Sensors 194
 10.3.3 Cryptand-Based PCT Sensors 196
 10.3.4 Calixarene-Based PCT Sensors 196
10.4 PCT Sensors Based on the Interaction Between
the Bound Cation and an Electron-Withdrawing Group .. 198
 10.4.1 Crown-Containing PCT Sensors 198
 10.4.2 Calixarene-Based PCT Sensors 203
10.5 Conclusion ... 205
References .. 206

11 Fluorometric Detection of Anion Activity
and Temperature Changes .. 209
L. Fabbrizzi, M. Licchelli, A. Poggi, G. Rabaioli, A. Taglietti
11.1 The Two-Component Approach to the Design
of a Fluorescent Molecular Sensor 209
11.2 The Use of a [Zn^{II}(tren)]^{2+} Platform for Anion
Recognition and Fluorescent Sensing 212
11.3 Carboxylate Recognition Signalled by Fluorescence
Enhancement .. 219
11.4 The Design of a Molecular Fluorescent Thermometer 222
References .. 226

12 Oxygen Diffusion in Polymer Films for Luminescence
Barometry Applications ... 229
X. Lu, I. Manners, M.A. Winnik
12.1 Introduction .. 229
 12.1.1 Measuring Oxygen Transport 230
12.2 Oxygen Diffusion and Luminescence Quenching ... 231
 12.2.1 Diffusion-Controlled Reactions 232
 12.2.2 Quenching and Oxygen Diffusion 233
12.3 Silicone Polymers ... 235
 12.3.1 PDMS .. 235
 12.3.2 Genesee Resins ... 236
12.4 Poly(aminothionylphosphazenes) (PATP) 240
12.5 Modified Poly(aminothionylphosphazenes) 244
 12.5.1 MSPTP .. 245
 12.5.2 PTHF .. 247
 12.5.3 C_4PATP-PTHF Block Copolymers 248
 12.5.4 MSPTP-PTHF ... 251
12.6 Summary ... 253
References .. 254
17.2 Theoretical Background of Common Approaches in Single Molecule Analysis (SMA) .. 337
 17.2.1 Principles of Fluorescence Correlation Spectroscopy (FCS) .. 337
 17.2.2 Autocorrelation Analysis .. 337
 17.2.3 Features and Issues of FCS-Based Screening 346
 17.2.4 Photon Counting Statistics: Poisson and Super-Poisson Analysis ... 353
 17.2.5 Photon Counting Histogram (PCH) 354
 17.2.6 Fluorescence Intensity Distribution Analysis (FIDA) .. 359
 17.2.7 Features and Issues of FIDA and PCH 363
 17.2.8 Burst Integrated Lifetime (BIFL) 365
 17.2.9 Features and Issues of BIFL ... 371
 17.3 Conclusion and Outlook .. 374
References .. 375

18 Picosecond Fluorescence Lifetime Imaging Spectroscopy as a New Tool for 3D Structure Determination of Macromolecules in Living Cells ... 381
K. KEMNITZ
 18.1 Time- and Space-Correlated Single Photon Counting (TSCSPC) Spectroscopy and Microscopy 381
 18.1.1 DL-System .. 382
 18.1.2 QA-System ... 384
 18.2 EC Biotechnology Demonstration Project: Picosecond Fluorescence Lifetime Imaging as a New Tool for 3D Structure Determination of Macromolecules in Cells ... 385
 18.2.1 Current State of Knowledge .. 385
 18.2.2 Demonstration Objectives ... 386
 18.2.3 Work Content .. 386
 18.2.4 Role of Partners .. 387
 18.2.4.1 Technology Producers ... 387
 18.2.4.2 Technology Users ... 387
 18.3 Multi-Parameter TSCSPC .. 388
 18.4 Minimal-Invasive Fluorescence Microscopy (MIFM) 390
 18.5 Living Cells: Fluorescence Dynamics Imaging 391
 18.5.1 Fluorescence and Fluorescence Anisotropy Decays of EB-Intercalated DNA in the Cell Nucleus: Collaboration with Maïté Coppey-Moisan (Institut Jacques Monod, Paris) ... 391
 18.5.2 GFP-Aggregation, Studied by Fluorescence and Fluorescence Anisotropy Dynamics: Collaboration with Maïté Coppey-Moisan (Institut Jacques Monod, Paris) ... 391
Part 5 Proteins and Their Interactions as Studied by Fluorescence Methods

19 About the Prediction of Tryptophan Fluorescence Lifetimes and the Analysis of Fluorescence Changes in Multi-Tryptophan Proteins

A. Sillen, Y. Engelborghs

19.1 Interpreting Fluorescence Changes in Proteins

19.2 Determination of the Parameters

19.2.1 The Wavelength-Independent Amplitude Fraction α

19.2.2 The Radiative Rate Constant

19.3 Analysis of the Meaning of the Different Factors of Q/Q_0
19.3.1 Heterogeneous Static Quenching or Population Reshuffling (f_{PR}) 416
19.3.1.1 Estimation of Microstates of Tryptophan Side Chains 416
19.3.2 The Factor of Pure Dynamic Quenching (f_{DQ}) 417
19.4 Examples .. 418
19.5 Comparison of a System with Multiple Fluorophores and Multiple Lifetimes with a System Containing One Fluorophore with Multiple Lifetimes 420
19.5.1 Examples .. 420
19.6 Conclusion .. 421
References ... 421

20 Application of Time-Resolved Fluorescence Spectroscopy to Studies of DNA-Protein Interactions and RNA Folding D.P. MILLAR
20.1 Introduction .. 425
20.2 DNA Polymerase Proofreading 426
20.2.1 Detecting the Two DNA Binding Modes of Klenow Fragment 426
20.2.2 Time-Resolved Anisotropy for a Heterogeneous Mixture of Probe Environments 428
20.2.3 Partitioning of Mismatched DNA Substrates Between pol and exo Sites 429
20.2.4 Energetic Contributions of Protein Side Chains to DNA Partitioning 430
20.3 Tertiary Structure Formation in the Hairpin Ribozyme 431
20.3.1 tr-FRET Analysis of the Hairpin Ribozyme 432
20.3.2 Influence of the Interdomain Junction on Ribozyme Folding 435
20.4 Conclusions and Outlook 436
References ... 437

21 Rare Earth Cryptates and TRACE Technology as Tools for Probing Molecular Interactions in Biology B. ALPHA-BAZIN, H. BAZIN, M. PRÉAUDAT, E. TRINQUET, G. MATHIS
21.1 Introduction .. 439
21.2 Fluorescence and Homogeneous Assays 439
21.2.1 Time Resolved Fluorescence and Rare Earth Complexes 441
21.2.2 Rare Earth Chelates 441
21.3 TRACE Technology .. 442
21.3.1 Rare Earth Cryptates as a New Type of Fluorescent Label 442
21.3.2 Modulation Processes and Homogeneous Assays 443