Brain Plasticity and Epilepsy

EDITED BY

JEROME ENGEL, JR.
Departments of Neurology and Neurobiology and the Brain Research Institute, UCLA School of Medicine, Los Angeles, California

PHILIP A. SCHWARTZKROIN
Department of Neurological Surgery
University of Washington, Seattle, Washington

SOLOMON L. MOSHÉ
Department of Neurology, Neuroscience and Pediatrics
Albert Einstein College of Medicine, Bronx, New York

DANIEL H. LOWENSTEIN
Dean of Medical Education
Harvard Medical School, Boston, Massachusetts

ACADEMIC PRESS
San Diego London Boston New York Sydney Tokyo Toronto
CONTENTS

CONTRIBUTORS ... xv
PREFACE ... xix
ACKNOWLEDGMENTS .. xxi

Mechanisms of Brain Plasticity: From Normal Brain Function to Pathology
PHILIP A. SCHWARTZKROIN

I. Introduction .. 1
II. Relationships between Neuropathology and Plasticity 4
III. Summary ... 10
 References ... 10

Brain Development and Generation of Brain Pathologies
GREGORY L. HOLMES AND BRIDGET MCCABE

I. Introduction .. 17
II. Timing of Brain Development and Pathology 17
III. Activity-Dependent Alterations in Brain Development and Function 22
IV. Summary ... 34
 References ... 35

Maturation of Channels and Receptors: Consequences for Excitability
DAVID F. OWENS AND ARNOLD R. KRIEGSTEIN

I. Introduction .. 43
II. Neocortical Development ... 44
III. Neocortical Organization ... 46
IV. Channels and Receptors ... 49
V. Synapse Maturation .. 67
VI. Epilepsy ... 69
Structural Reorganization of Hippocampal Networks Caused by Seizure Activity

Daniel H. Lowenstein

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>209</td>
</tr>
<tr>
<td>II. The Effects of Seizures on Neuronal Survival</td>
<td>210</td>
</tr>
<tr>
<td>III. The Effects of Seizures on Axonal Architecture</td>
<td>217</td>
</tr>
<tr>
<td>IV. The Effects of Seizures on New Cell Birth</td>
<td>222</td>
</tr>
</tbody>
</table>

Cortical Reorganization and Seizure Generation in Dysplastic Cortex

G. Avanzini, R. Spreafico, S. Franceschetti, G. Sancini, G. Battaglia, and V. Scaioli

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>159</td>
</tr>
<tr>
<td>II. Circuitry Rearrangement in Human Dysplastic Tissue</td>
<td>160</td>
</tr>
<tr>
<td>III. Reorganization of Sensory Representation in Cerebral Dysgeneses</td>
<td>162</td>
</tr>
<tr>
<td>IV. Aberrant Connectivity of Heterotopic Neurons in Rats Treated Prenatally with Methylazoxymethanol</td>
<td>165</td>
</tr>
<tr>
<td>V. Conclusions</td>
<td>169</td>
</tr>
<tr>
<td>References</td>
<td>171</td>
</tr>
</tbody>
</table>

Rasmussen's Syndrome with Particular Reference to Cerebral Plasticity: A Tribute to Frank Morrell

Frederick Andermann and Yvonne Hart

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>173</td>
</tr>
<tr>
<td>II. Pathological Studies</td>
<td>176</td>
</tr>
<tr>
<td>III. Double Pathology in Rasmussen's Syndrome</td>
<td>177</td>
</tr>
<tr>
<td>IV. Bilateral Hemispheric Involvement in Rasmussen's Syndrome</td>
<td>178</td>
</tr>
<tr>
<td>V. Early-Onset Bilateral and Familial Rasmussen's Syndrome</td>
<td>179</td>
</tr>
<tr>
<td>VI. Rasmussen's Syndrome Developing in Adults or Adolescents</td>
<td>179</td>
</tr>
<tr>
<td>VII. Etiology of Rasmussen's Syndrome</td>
<td>180</td>
</tr>
<tr>
<td>VIII. Diagnosis and Investigation</td>
<td>183</td>
</tr>
<tr>
<td>IX. Clinical Course</td>
<td>197</td>
</tr>
<tr>
<td>X. Treatment</td>
<td>197</td>
</tr>
<tr>
<td>References</td>
<td>204</td>
</tr>
</tbody>
</table>
Epilepsy-Associated Plasticity in γ-Aminobutyric Acid Receptor Expression, Function, and Inhibitory Synaptic Properties

DOUGLAS A. COULTER

I. Introduction .. 237
II. Acute GABA Inhibitory Alterations during Status Epilepticus 240
III. Chronic GABA Inhibitory Alterations in Epileptic Hippocampus 241
IV. Latent Period GABA Inhibitory Alterations in Hippocampus prior to the Onset of Spontaneous Seizures 247
V. Summary ... 248
References .. 249

Synaptic Plasticity and Secondary Epileptogenesis

TIMOTHY J. TEYLER, STEVEN L. MORGAN, REBECCA N. RUSSELL, AND BRIAN L. WOODSIDE

I. Introduction .. 253
II. Synaptic Plasticity ... 254
III. Forms of Long-Term Potentiation 254
IV. Role of Neurotrophins in Long-Term Potentiation and Epilepsy 258
V. Functional Significance of Two Forms of Long-Term Potentiation 260
VI. Secondary Epileptogenesis 261
VII. Possible Role of vDccLTP in Secondary Epileptogenesis 263
References .. 265

Synaptic Plasticity in Epileptogenesis: Cellular Mechanisms Underlying Long-Lasting Synaptic Modifications That Require New Gene Expression

OSWALD STEWARD, CHRISTOPHER S. WALLACE, AND PAUL F. WORLEY

I. Introduction .. 269
II. Long-Term Potentiation: A Paradigm for Elucidating the Cellular and Molecular Mechanisms of Activity-Induced Epilepsy 271
III. Constraints on the Cellular Mechanisms Underlying Synaptic Modifications That Require Protein Synthesis 274
Cellular Correlates of Behavior

EMMA R. WOOD, PAUL A. DUDCHENKO, AND HOWARD EICHENBAUM

I. Introduction .. 293

II. Hippocampal Activity Reflects Spatial Regularities When Behavior Is Randomized 294

III. Hippocampal Cell Activity Is Influenced by Behavioral Regularities Occurring in a Given Location ... 295

IV. Place Cells Can Fire in Multiple Locations in the Same Environment 297

V. Can These Data Be Accounted for by the Traditional Spatial Hypothesis? 302

VI. An Alternative Interpretation ... 304

VII. One Test of the Regularity versus Spatial Mapping Accounts of Hippocampal Cell Coding 306

VIII. Summary and Closing Thoughts ... 309

References ... 309

Mechanisms of Neuronal Conditioning

DAVID A. T. KING, DAVID J. KRUPA, MICHAEL R. FOY, AND RICHARD F. THOMPSON

I. Introduction .. 313

II. Cerebellar Cortical Lesions 317

III. The Locus of the Long Term Memory Trace in Eyeblink Conditioning 318

IV. Cerebellar Purkinje Cell Activity 321

V. Purkinje Cell Complex-Spike Responses 323

VI. Purkinje Cell Simple-Spike Responses 325

VII. Conclusion .. 333

References ... 333
CONTENTS

Plasticity in the Aging Central Nervous System
C. A. Barnes

I. Introduction ... 339

II. Induction of Long-Term Potentiation at the Schaffer Collateral-CA1 Synapse during Aging 340

III. Induction of Long-Term Potentiation at the Perforant Path-Granule Cell Synapse during Aging 341

IV. Are There Really No Long-Term Potentiation Induction Deficits during Aging? 341

V. Are There Long-Term Potentiation Maintenance Deficits during Aging? 344

VI. Correlations between Spatial Behavior and Hippocampal Plasticity 344

VII. Pharmacological Modification of Long-Term Potentiation Persistence and Spatial Memory during Aging .. 346

VIII. Ensemble Recording Methods Used to Assess Behavior and Plasticity Mechanisms during Aging .. 346

IX. Conclusion .. 349

References ... 350

Secondary Epileptogenesis, Kindling, and Intractable Epilepsy:
A Reappraisal from the Perspective of Neural Plasticity
Thomas P. Sutula

I. Introduction .. 355

II. The Mirror Focus and Secondary Epileptogenesis ... 356

III. Does “Secondary Epileptogenesis” Occur in People? ... 357

IV. Kindling: A Phenomenon of Neural Plasticity Producing Epileptogenesis 358

V. Potential Significance of the Mirror Focus, Secondary Epileptogenesis, and Kindling for Human Epilepsy ... 359

VI. Intractable Temporal Lobe Epilepsy and Hippocampal Sclerosis 359

VII. Kindling as Model of Temporal Lobe Epilepsy ... 361

VIII. Cellular and Functional Alterations Observed in Intractable Human Temporal Lobe Epilepsy Are Induced by Kindling 362

IX. Progressive Hippocampal Atrophy in Intractable Temporal Lobe Epilepsy Is Associated with Recurring Seizures .. 374

X. Seizure-Induced Circuit Plasticity and Kindling: Phenomena of Human Epileptogenesis? 375

XI. Molecular Genetics of Activity-Induced and Seizure-Induced Plasticity: Implications for the Variability and Epidemiology of Epilepsy 376

XII. Kindling: Seizure-Induced Circuit Plasticity That Promotes Intractable Epilepsy? 377

References ... 379
Clinical Evidence for Secondary Epileptogenesis

HANS O. LÜDERS

I. Introduction .. 469
II. Definitions .. 469
III. Stages of Secondary Epileptogenesis 470
IV. Acute Secondary Epileptogenesis in Humans 471
V. Chronic Secondary Epileptogenesis in Humans 473
VI. Conclusions .. 477
References ... 479

Epilepsy as a Progressive (or Nonprogressive “Benign”) Disorder

JOHN A. WADA

I. Introduction .. 481
II. Phylogenesis and Substrate of Kindling Landmarks 487
III. Primary Site Amygdaloid Kindling 489
IV. Distant Effect of Primary Site Kindling: Secondary Site Amygdaloid Kindling .. 493
V. Durability of Kindled Susceptibility 495
VI. Discussion ... 496
References ... 500

Pathophysiological Aspects of Landau–Kleffner Syndrome: From the Active Epileptic Phase to Recovery

MARIE-NOELLE METZ-LUTZ, PIERRE MAQUET, ANNE DE SAINT MARTIN, GABRIELLE RUDOLF, NORMA WIOLAND, EDOUARD HIRSCH, AND CHRISTIAN MARESCAUX

I. Introduction .. 505
II. Clinical and Pathophysiological Aspects of the Active Epileptic Period .. 507
III. Neuropsychological and Neurophysiological Features after Recovery of Epilepsy .. 515
IV. Discussion ... 520
V. Conclusion ... 524
References ... 525