PART VII Cytogenetics and Molecular Genetics

30. Sorting of Plant Chromosomes

Jaroslav Doležel, Martin A. Lysák, Marie Kubalíková, Hana Šímková, Jiří Mašas, and Sergio Lucretti

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>II. Application</td>
<td>5</td>
</tr>
<tr>
<td>III. Materials</td>
<td>6</td>
</tr>
<tr>
<td>IV. Procedures</td>
<td>12</td>
</tr>
<tr>
<td>V. Critical Aspects of the Procedures</td>
<td>18</td>
</tr>
<tr>
<td>VI. Instruments</td>
<td>21</td>
</tr>
<tr>
<td>VII. Results</td>
<td>21</td>
</tr>
<tr>
<td>VIII. Conclusions and Perspectives</td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
</tbody>
</table>

31. Quantitative DNA Fiber Mapping

Heinz-Ulli G. Weier

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>33</td>
</tr>
<tr>
<td>II. Materials</td>
<td>35</td>
</tr>
<tr>
<td>III. Protocols</td>
<td>38</td>
</tr>
<tr>
<td>IV. Critical Aspects of the Procedure</td>
<td>46</td>
</tr>
<tr>
<td>V. Results and Discussion</td>
<td>47</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

32. Primed in Situ Labeling

Johnny Hindkjaer, Lars Bolund, and Steen Kelerva

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>55</td>
</tr>
<tr>
<td>II. Applications</td>
<td>56</td>
</tr>
<tr>
<td>III. Materials</td>
<td>56</td>
</tr>
<tr>
<td>IV. Protocols</td>
<td>58</td>
</tr>
</tbody>
</table>
PART VIII Cell Function and Differentiation

35. Analysis of Mitochondria by Flow Cytometry
 Martin Poot and Robert H. Pierce
 I. Introduction 118
 II. Materials and Methods 121
 III. Critical Aspects 125
 References 126

36. Analysis of RNA Synthesis by Cytometry
 Peter Ostrup Jensen, Jacob Larsen, and Jorgen K. Larsen
 I. Introduction 129
 II. Background 130
 III. Methods for Analysis of 5'-Bromouridine Incorporation and DNA Content 131
 IV. Results of Labeling RNA with 5'-Bromouridine 134
 V. Applications 136
 References 137
37. Flow Cytometry of Erythropoiesis in Culture: Bivariate Profiles of Fetal and Adult Hemoglobin
 Ralph M. Böhmer
 I. Introduction
 II. Details of the Method
 III. Sample Experiments
 IV. Problems and Limitations
 References

38. Flow Cytometric Analysis of Human Hemopoietic Progenitor Differentiation by Assessing Cell Division Rate and Phenotypic Profile
 Luca Pierelli, Giovanni Scambia, and Andrea Fattorossi
 I. Introduction
 II. Background
 III. Critical Aspects of Methodology
 IV. Functionally Distinct Circulating Hemopoietic Progenitor Subsets Can Be Assessed during Cytokine-Driven Differentiation
 V. Concluding Remarks
 References

PART IX Experimental Oncology

39. Cytometry of Antitumor Drug–Intracellular Target Interactions
 Paul J. Smith and Marie Wiltshire
 I. Introduction
 II. General Classification of Cytotoxic Anticancer Agents
 III. Establishment of Quality Control Parameters
 IV. Drug–DNA Interactions
 V. Conclusions
 References

40. Monitoring of Cellular Resistance to Cancer Chemotherapy: Drug Retention and Efflux
 Awtar Krishan
 I. Introduction and Background
 II. Applications
 III. Cell Lines, Efflux, Multiple Drug Resistance Drugs, and Blockers
 IV. Staining Protocols
 V. Critical Aspects
 VI. Controls, Standards, and Instruments
 VII. Results and Conclusions
 References
41. Resistance of Tumor Cells to Chemo- and Radiotherapy Modulated by the Three-Dimensional Architecture of Solid Tumors and Spheroids
 Ralph E. Durand and Peggy L. Olive
 I. Introduction and Historical Perspective 211
 II. Background 213
 III. Methods 215
 IV. Results and Discussion 217
 V. Conclusions and Future Directions 227
 References 228

42. Analysis of DNA Damage in Individual Cells
 Peggy L. Olive, Ralph E. Durand, Judit P. Banáth, and Peter J. Johnston
 I. Introduction 235
 II. The Development of the Single Cell Gel Electrophoresis/Comet Assay 236
 III. Comet Preparation and Analysis 238
 IV. Types of Damage Detected by the Comet Assay 242
 V. Using DNA Damage to Predict Cell Survival in Complex Systems 244
 VI. Future Directions 246
 References 247

43. Cytometric Methods to Analyze Ionizing-Radiation Effects
 William D. Wright, Isabelle Lagroye, Peng Zhang, Robert S. Malyapa, and Joseph L. Roti Roti
 I. Introduction 251
 II. Applications 252
 III. Methods for Measuring DNA Damage on a Cell-by-Cell Basis 253
 IV. Summary 267
 References 267

44. Cytometric Methods to Analyze Thermal Effects
 Robert P. VanderWaal, Ryuji Higashikubo, Mai Xu, Douglas R. Spitz, William D. Wright, and Joseph L. Roti Roti
 I. Introduction 269
 II. Application 270
 III. Methods to Measure Nuclear and Nuclear Matrix Protein Content 271
 IV. Identification of Altered DNA Replication Patterns Following Heat Shock 276
 V. Nuclear Localization of hsp70 278
 VI. Prooxidant Measurement 280
 VII. Results 281
 References 285
PART X Clinical Oncology

45. Multiparameter Data Acquisition and Analysis of Leukocytes by Flow Cytometry

Carleton C. Stewart and Sigrid J. Stewart

I. Introduction 289
II. Correlated List Mode Data 290
III. Verification of Instrument Performance 293
IV. Optical Filtration and Spectral Compensation 295
V. Multiparameter Data Analysis 308
VI. Summary 311
 References 311

46. Immunophenotyping of Hematological Malignancies by Laser Scanning Cytometry

Richard J. Clatch

I. Immunophenotyping of Leukemia and Lymphoma: General Considerations 313
II. Description of Laser Scanning Cytometry 316
III. Immunophenotyping by Laser Scanning Cytometry 316
IV. Extensions of the Method 327
V. Conclusions 340
 References 340

47. Immunophenotyping of Acute Leukemia: Utility of CD45 for Blast Cell Identification

J-P. Vial and F. Lacombe

I. Introduction 344
II. Background 344
III. Methods 345
IV. Results and Comparison with Other Methods 348
V. Critical Aspects of the Methodology 352
VI. Pitfalls and Misinterpretation of the Data 353
VII. Future Directions 355
 References 357

48. Cell Proliferation Markers in Human Solid Tumors: Assessing Their Impact in Clinical Oncology

Maria Grazia Daidone, Aurora Costa, and Rosella Silvestrini

I. Introduction 359
II. Proliferation Markers 361
III. Biological Studies 365
IV. Clinical Studies 366
V. Conclusions on First Generation Translational Studies with Proliferation Markers
 References 378
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>49. Detection of Minimal Residual Disease</td>
<td>Andrzej Deptala and Sharon P. Mayer</td>
<td>385</td>
</tr>
<tr>
<td>I. Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Tissue Sources to Detect Minimal Residual Disease</td>
<td></td>
<td>387</td>
</tr>
<tr>
<td>III. Methods to Detect Minimal Residual Disease</td>
<td></td>
<td>388</td>
</tr>
<tr>
<td>IV. Technical Problems</td>
<td></td>
<td>414</td>
</tr>
<tr>
<td>V. Concluding Remarks</td>
<td></td>
<td>416</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>416</td>
</tr>
<tr>
<td>50. Analysis of Human Tumors by Laser Scanning Cytometry</td>
<td>Wojciech Gorczyca, Andrzej Deptala, Elżbieta Bedner, Xun Li, Myron R. Melamed, and Zbigniew Darzynkiewicz</td>
<td>422</td>
</tr>
<tr>
<td>I. Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Analysis of Cellular DNA Content by Laser Scanning Cytometry</td>
<td></td>
<td>423</td>
</tr>
<tr>
<td>III. Analysis of Apoptosis by Laser Scanning Cytometry</td>
<td></td>
<td>425</td>
</tr>
<tr>
<td>IV. Analysis of Proliferation Associated Antigens by Laser Scanning Cytometry</td>
<td></td>
<td>430</td>
</tr>
<tr>
<td>V. Analysis of Estrogen Receptors by Laser Scanning Cytometry</td>
<td></td>
<td>435</td>
</tr>
<tr>
<td>VI. Analysis of Transcription Factors by Laser Scanning Cytometry</td>
<td></td>
<td>437</td>
</tr>
<tr>
<td>VII. Measurement of Nucleoli Using Laser Scanning Cytometry Fluorescence in Situ Hybridization Protocol</td>
<td></td>
<td>438</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>441</td>
</tr>
<tr>
<td>51. Laser Cytometry of Human Tissues and Tumors: Proliferation and Therapeutic Applications</td>
<td>David A. Rew</td>
<td>446</td>
</tr>
<tr>
<td>I. Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Ploidy and Proliferation in Surgical Oncology</td>
<td></td>
<td>447</td>
</tr>
<tr>
<td>III. Cytometric Studies of Proliferation</td>
<td></td>
<td>448</td>
</tr>
<tr>
<td>IV. The Halogenated Pyrimidines in Cell Proliferation Research</td>
<td></td>
<td>449</td>
</tr>
<tr>
<td>V. Clinical Studies of Cell Production Rates with Thymidine Analogs</td>
<td></td>
<td>452</td>
</tr>
<tr>
<td>VI. Further Applications of Cytometry in Clinical Oncology</td>
<td></td>
<td>474</td>
</tr>
<tr>
<td>VII. Conclusions</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>52. Prediction and Precise Diagnosis of Diseases by Data Pattern Analysis in Multiparameter Flow Cytometry: Melanoma, Juvenile Asthma, and Human Immunodeficiency Virus Infection</td>
<td>Günter Valet, Hanna Kahle, Friedrich Otto, Edeltraut Bräutigam, and Luc Kestens</td>
<td>488</td>
</tr>
<tr>
<td>I. Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Material and Methods</td>
<td></td>
<td>489</td>
</tr>
<tr>
<td>III. Results</td>
<td></td>
<td>493</td>
</tr>
<tr>
<td>IV. Discussion</td>
<td></td>
<td>506</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>507</td>
</tr>
</tbody>
</table>
PART XI Microorganisms and Infectious Diseases

53. Flow Cytometric Analysis of Microorganisms
 S. A. Sincock and J. Paul Robinson
 I. Introduction 511
 II. Experimental Approaches 514
 III. Applications in Medical and Food Microbiology 526
 IV. Conclusion 531
 References 532

54. Staining and Measurement of DNA in Bacteria
 Harald B. Steen
 I. Introduction 539
 II. Basic Considerations 540
 III. Experimental Methods 543
 IV. Standards and Controls 548
 References 550

55. Flow Cytometric Monitoring of Bacterial Susceptibility to Antibiotics
 Mette Walberg and Harald B. Steen
 I. Introduction 553
 II. Fluorescent Dyes 554
 III. Uptake of Fluorescent Dyes 555
 IV. Effects of Antibiotics 558
 V. Assessment of Drug Effects 558
 VI. Applications of Flow Cytometry to Medical Microbiology 563
 References 563

56. Flow Cytometry for Evaluation and Investigation of Human Immunodeficiency Virus Infection
 Thomas W. Mc Closhrey
 I. Introduction 567
 II. Application of Flow Cytometry to Monitor HIV Infection 568
 III. Application of Flow Cytometry to Investigate HIV Disease 582
 IV. Conclusions 584
 References 584

Index 593
Volumes in Series 609
PART I Principles of Cytometry and General Methods
1. A Brief History of Flow Cytometry and Sorting
 Myron R. Melamed

2. Principles of Flow Cytometry: An Overview
 Alice L. Givan

3. Laser Scanning Cytometry
 Louis A. Kamentsky

4. Principles of Confocal Microscopy
 J. Paul Robinson

5. Optical Measurements in Cytometry: Light Scattering, Extinction, Absorption, and Fluorescence
 Howard M. Shapiro

6. Flow Cytometric Fluorescence Lifetime Measurements
 Harry A. Crissman and John A. Steinkamp

7. Principles of Data Acquisition and Display
 Howard M. Shapiro

8. Time as a Flow Cytometric Parameter
 Larry Seamer and Larry A. Sklar

9. Protein Labeling with Fluorescent Probes
 Kevin L. Holmes and Larry M. Lantz

PART II Cell Preparation
10. Preparation of Cells from Blood
 J. Philip McCoy, Jr.
11. Cell Preparation for the Identification of Leukocytes
Carleton C. Stewart and Sigrid J. Stewart

12. Strategies for Cell Permeabilization and Fixation in Detecting Surface and Intracellular Antigens
Steven K. Koester and Wade E. Bolton

PART III Standardization, Quality Assurance
13. Stoichiometry of Immunocytochemical Staining Reactions
James W. Jacobberger

14. Standardization and Quantitation in Flow Cytometry
Robert A. Hoffman

PART IV Cell Proliferation
15. Methods to Identify Mitotic Cells by Flow Cytometry
Gloria Juan, Frank Traganos, and Zbigniew Darzynkiewicz

16. Cell Cycle Kinetics Estimated by Analysis of Bromodeoxyuridine Incorporation
Nicholas H. A. Terry and R. Allen White

17. Flow Cytometric Analysis of Cell Division History Using Dilution of Carboxyfluorescein Diacetate Succinimidyl Ester, a Stably Integrated Fluorescent Probe
A. Bruce Lyons, Jhagvaral Hashold, and Philip D. Hodgkin

18. Antibodies against the Ki-67 Protein: Assessment of the Growth Fraction and Tools for Cell Cycle Analysis
Elmar Endl, Christiane Hollmann, and Johannes Gerdes

19. Detection of Proliferating Cell Nuclear Antigen
Jørgen K. Larsen, Göran Landberg, and Göran Roos

20. Lymphocyte Activation Associated Antigens
Andrea Fattorossi, Alessandra Battaglia, and Cristiano Perlini
PART V Cell Death/Apoptosis

21. Analysis of Mitochondria during Cell Death
 Andrea Cossarizza and Stefano Salvioni

22. Cytometry of Caspases
 Steven K. Koester and Wade E. Bolton

23. Analysis of Apoptosis in Plant Cells
 Iona E. Weir

24. Difficulties and Pitfalls in Analysis of Apoptosis
 Zbigniew Darzynkiewicz, Elżbieta Bedner, and Frank Traganos

PART VI Cell–Cell, Cell–Environment Interactions

25. Analysis of Cell Migration
 Nicole Dodge Zantek and Michael S. Kinch

26. Three-Dimensional Extracellular Matrix Substrates for Cell Culture
 Sherry L. Voytik-Harbin

27. Three-Dimensional Imaging of Extracellular Matrix and Extracellular Matrix–Cell Interactions
 Sherry L. Voytik-Harbin, Bartłomiej Rajwa, and J. Paul Robinson

28. Cytometric Analysis of Cell Contact and Adhesion
 Michael S. Kinch

 Emma T. Bowden, Peter J. Coopman, and Susette C. Mueller