Monoclonal Antibodies

A Practical Approach

Edited by

Philip Shepherd
Guy's, King's and St Thomas' Schools of Medicine, Peter Gorner Department of Immunobiology, Guy's Hospital, New Guy's House, London Bridge, London SE1 9RT, U.K.

and

Christopher Dean
Section of Immunology, Institute of Cancer Research, McElwain Laboratories, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, U.K.

OXFORD UNIVERSITY PRESS
Contents

List of protocols page xix
Abbreviations xxvii

1 Preparation of rodent monoclonal antibodies by in vitro somatic hybridization 1
 Christopher Dean and Philip Shepherd
 1 Introduction and strategy 1
 2 Choice of host for immunization and myeloma for cell fusion 3
 3 Choice of immunogen 4
 4 Preparation of antigen for immunization 5
 Soluble antigens 5
 Antigens expressed on live cells 5
 Plasmid DNA 6
 Peptides 7
 5 Route of immunization 7
 Generation of immune spleen cells 7
 Immunization via the Peyer’s patches of rats 7
 6 Growth of myeloma cell lines 9
 7 Preparation of cells for fusion 10
 8 Cell fusion 11
 9 Screening hybridoma culture supernatants for specific antibody 12
 Antigen coated multiwell plates 12
 Live or fixed cells 16
 Ligand binding assays 17
 10 Cloning of hybridomas 18
 11 Characterization and use of the antibodies obtained 19
 Isotyping of antibodies 20
 Epitope reactivity 20
 Specific immunoprecipitation 21
 References 23
2 Preparation of recombinant antibodies from immune rodent spleens and the design of their humanization by CDR grafting

Olivier J. P. Léger and José W. Saldanha

1 Introduction 25
2 Preparation of mouse spleen 26
3 Isolation of total RNA from spleen 28
4 Poly(A⁺) mRNA isolation 30
5 Reverse transcriptase reaction 31
6 Primary PCR of antibody genes 33
7 Preparation of linker 37
8 Assembly of VH and VK gene fragments with linker DNA 39
9 Assembly of single chain Fv antibody fragments 41
10 Reamplification of assembled scFv DNA 43
11 Restriction enzyme digestion of assembled scFv 44
12 Purification of pHEN-1 vector by equilibrium centrifugation in CsCl ethidium bromide gradients 46
13 Restriction digestion of the phage display vector, pHEN-1 49
14 Ligation of pHEN-1 and insert antibody scFv 50
15 Preparation of electroporation competent E. coli TG1 strain cells 52
16 Electroporation 53
17 Analysis of recombinant clones from the library 55
References 57

Appendix 58
1 The design of the humanized antibody 58
 Issues to consider 59
 References 64

3 Selection of antibodies from phage libraries of immunoglobulin genes

Jane K. Osbourn

1 Introduction 67
2 Preparation and storage of phage library stocks 68
 Phagemid libraries 68
 Phage libraries 69
3 Maintenance of bacterial stocks and titration of phage preparations 69
4 Selection of phage libraries on purified, immobilized antigen 71
 Immobilization of antigen on immunotubes 71
 Elution conditions 72
 Storage and rescue of the phagemid population after selection 72
 Choice of number of selection rounds 73
5 Selection of phage libraries on biotinylated antigen 74
 Biotinylation of antigen 74
 Selections using biotinylated antigen 75
6 Cell surface selections 76
- Adherent cell selections 77
- Cells in suspension 78
- Screening the output of cell surface selections 78
7 Proximity selections 78
- Proximity selection using an existing antibody 80
- Proximity selection using natural ligands 81
- Step back selections 83
8 Screening of selected phage 83
- Basic screening assays 83
- Affinity screening 87
9 Soluble scFv production and purification 87
References 89

4 ARM complexes for *in vitro* display and evolution of antibody combining sites 91
Maria A. T. Groves, Margit Menges, Hong Liu, and Mingyue He
1 Introduction 91
2 Ribosome display methodology 93
- Outline of procedure 93
- Primer design and single chain antibody (VH/K) construction for ARM display 93
- Generation of ARM complexes by coupled transcription/translation in vitro 96
- Antigen selection of ARM complexes 98
- Recovery and amplification of DNA from antigen-selected ARM complexes 100
- Further ARM cycles and cloning 103
- Analysis of clones encoding antibodies by ARM display 104
3 Examples of ARM display 105
- ARM specificity 105
- Selection of DB3 VH/K from libraries 106
4 Troubleshooting 107
- Background 107
- No DNA recovery 107
5 Summary 107
References 109

5 Human monoclonal antibodies to blood group antigens 111
Belinda M. Kumpel
1 Introduction 111
2 General equipment and reagents required 112
3 Selection of donor 113
- Preparation of lymphocytes 113
4 EBV transformation of B cells 114
- Preparation of EBV 115
- EBV transformation of B cells and growth of B-LCL 116
5 Selection of antigen-specific B cells by rosetting 117
6 Fusion of B-LCL with murine myeloma cells (P3X63Ag8.653) 118
7 Screening techniques 120
8 Cloning 121
9 Cryopreservation of cells 122
References 123

6 Laboratory based methods for small scale production of monoclonal antibodies 125
Bryan Griffiths
1 Introduction 125
2 General principles 125
 Culture parameters 125
 Medium and serum 127
3 Stationary cultures 129
 Tissue culture plates and flasks 129
 Specialized (scale-up) culture systems 130
4 Stirred cultures 131
 Spinner flasks 131
 SuperSpinner 133
 Stirred bioreactors 134
5 Dynamic (non-stirred) culture systems 135
 Roller bottle culture 135
 Airlift fermenters 136
6 Perfusion (high cell density) systems 137
 Hollow fibre (Acusyst) culture 138
 Tecnomouse 138
 Membrane culture systems (miniPERM) 139
 Packed bed systems 140
 Fluidized bed bioreactors 142
7 Harvesting and concentration 143
 Harvesting and clarification 143
 Concentration 144
8 Summary 145
References 146

7 Isolation and purification of monoclonal antibodies from tissue culture supernatant 149
Geoff Hale
1 Objectives of antibody purification 149
2 Essential information about the antibody 150
3 Problems with purifying antibodies from culture supernatant 151
 Low concentration of antibody in culture supernatant compared with serum 151
 Potential contamination by bovine IgG 152
4 Equipment for antibody purification 153
 Equipment for chromatography 154
5 Precipitation methods 156
6 Affinity chromatography 158
 Reuse of affinity columns 159
 Choice of affinity ligand 160
 Immunofinity purification 162
7 Ion exchange chromatography 162
 Cation exchange chromatography 163
 Anion exchange chromatography 165
8 Immobilized metal affinity chromatography (IMAC) 166
9 Size exclusion chromatography (SEC) 168
10 Hydrophobic interaction chromatography 169
11 Other chromatographic methods 172
12 Choice of method 173
 Purification of antibody fragments 173
13 Storage of antibodies 173
14 Analysis of purity and activity 174
 Antibody concentration and purity 174
 Endotoxin contamination 177
15 Conclusion 179
 Acknowledgements 179
 References 180

8 Antibody production in plants 181
 Pascal Drake, Eva Stoger, Liz Nicholson, Paul Christou, and Julian K.-C. Ma
 1 Introduction 181
2 Expressing recombinant proteins in plants 181
 Plant hosts 182
 Antibodies in plants 182
 Modified viruses for transient expression in plants 185
 Glycosylation of recombinant proteins in transgenic plants 185
3 Plant transformation 186
 Gene constructs 187
 Agrobacterium tumefaciens-mediated transformation 188
 Principles of particle bombardment 192
4 Plant transformation techniques 196
 Agrobacterium-mediated transformation of tobacco 196
 Transformation of wheat by micro-projectile bombardment 199
5 Screening regenerated plantlets for immunoglobulin chain production 201
 Self- and cross-fertilization of transgenic plants 202
6 The overall advantages in expressing antibodies in plants 202
 References 203

9 Radiolabelling of monoclonal antibodies 207
 Stephen J. Mather
 1 Introduction 207
2 The choice of radionuclide 207
10 Non-radioactive antibody probes 237
G. Brian Wisdom

1 Introduction 237
2 Choice of label 238
3 General aspects of labelling 238
 The labelling reactions 238
 The monoclonal antibody 239
 Scale and ratios 239
 Purification and storage of the labelled antibody 239
4 Labelling with an enzyme 240
5 Labelling with fluorescein 242
6 Labelling with biotin 243
7 Labelling with digoxigenin (DIG) 244
8 Evaluation of labelled monoclonal antibodies 244
References 246

11 Immunogold probes for light and electron microscopy 247
Paul Monaghan and David Robertson

1 Introduction 247
2 Pre-embedding labelling for SEM and TEM 249
3 Thawed cryosections 251
4 Progressive lowering of temperature embedding (PLT) 255
5 Rapid freezing 256
6 Immunocytochemistry of resin sections 258
7 Multiple labelling 261
8 Conclusion 262
References 262

12 Characterization of cellular antigens using monoclonal antibodies 265
Gillian Hynes

1 Introduction 265
 Initial characterization of monoclonal antibodies 266
13 Immunoassays 297

Jane V. Peppard

1 Introduction 297

2 General considerations 297
 Selecting an antibody 297
 Selecting an assay standard 297
 Sample matrix 299
 Sample preparation and dilution 299
 Assay turnaround time 300

3 Solid support and separation options 301
 Microtitre plates 301
 Precipitation from solution 302
 Scintillation proximity 303

4 Labelling and detection of antibody or antigen 303
 Enzyme labelling 303
 Biotin labelling 305
 Labelling with lanthanide fluorophores 306
 Radioactive labelling 307
 Mass spectrometry 308

5 Setting up an assay 309
 Competitive binding immunoassay 309
 ‘Sandwich’ immunoassay 311
 Buffers 315
 Setting up an ELISA 316

References 318
3 Microscopy and imaging equipment
 Microscopes and associated hardware
 Imaging detectors for 3D sectioning microscopy
 Data analysis, image processing, and data presentation
4 Immunolabelling and visualization in living cells
 Labelling by microinjection of fluorescent antibodies
 Microscope set-up for live cell IFM
5 Examples of IFM in fixed cells
 References

17 FACS analysis of clinical haematological samples in transplantation
 for cancer
 Barbara C. Millar
 1 Introduction
 2 Fluorescence activated cell analysis
 General considerations
 Choice of antibodies, reagents, and general maintenance of the FACS analyser
 Dual fluorescence
 Preparation of clinical samples
 Quality control
 Calibration of the analyser
 3 Assessment of the progenitor cell content in bone marrow (BM) and peripheral blood
 stem cell (PCSC) harvests
 Rationale for measuring the progenitor cell content of BM and PBSC harvests for
 transplantation after intensive therapy for cancer
 The CD34 determinant
 Collecting peripheral blood stem cell (PBSC) harvests for CD34⁺ quantitation
 Collecting bone marrow (BM) harvests for CD34⁺ quantitation
 Quantitation of purified CD34⁺ cells from PBSC harvests from patients with chronic
 lymphocytic leukaemia
 4 Analysis of lymphocyte subsets in peripheral blood and bone marrow harvests from
 unrelated donors
 T cell depletion of paediatric matched (MUD) and unmatched (U-UD) bone marrow (BM)
 harvests from unrelated donors
 Analysis of lymphocyte subsets after transplantation or autologous rescue
 Measurement of intracellular cytokines in mononuclear cells (MNC) and T cells after
 transplantation or autologous rescue
 References

18 Immunocytochemical staining of cells and tissues for diagnostic
 applications
 Andrew R. Dodson and John P. Sloane
 1 Introduction
 2 Tissue and cell substrates
 Tissue sections
 Cytological specimens
3 Fixation and processing for paraffin wax embedded tissues 392
 Fixation 392
 Decalcification 392
 Processing 393
4 Section preparation 393
 Section adhesives 393
 Section storage 394
5 Primary antibodies 395
6 Immunocytochemical methodology 395
 Antigen retrieval 396
 Detection methodology 398
7 Reporter molecules 402
 Horseradish peroxidase 402
 Alkaline phosphatase 404
8 Enhancement 405
 Biotinylated tyramine 406
9 Controls 407
 Positive control 407
 Negative control 407
 External quality assurance scheme (EQA) 407
Acknowledgements 407
Suggested Further Reading 407
References 408

19 Detection of chemically modified DNA in lymphocytes of patients undergoing chemotherapy 411
 Michael J. Tilby
 1 Introduction 411
 Types of modifications to which antibodies can be produced 412
 Applications of antibodies against modified DNA 412
 Merits of raising antibodies against modified monodinucleotides versus modified polymeric DNA 412
 Requirements for detection of low frequencies of DNA modifications 414
2 Production of appropriate antibodies 414
 Immunization 414
 Screening hybridomas 415
3 ELISA techniques for quantification of DNA modifications 415
 Coating wells with DNA 416
 Direct binding assays 418
 Competitive assays 419
4 Staining for adducts in individual cells 426
 Staining techniques: conventional versus agarose embedded DNA 426
 Staining agarose embedded DNA 427
 References 429

20 Monoclonal antibody therapy in organ transplantation 431
 Matt Wise and Diana Zelenika
 1 Introduction 431
2 The challenge of antibody therapy in humans 432
 Immunological tolerance versus immunosuppression 432
 Depletion versus non-depletion 433
 Avoiding the antiglobulin response 434
 Can monoclonal antibodies ever be used to induce tolerance in humans? 434

3 Animal models of transplantation and mAb therapy: defining the problem 435

4 Which mAbs for organ transplantation 436
 Anti-CD3 mAb treatment 437
 Monoclonal antibodies to CD4 and CD8 440
 Monoclonal antibodies to CD25 (IL-2 receptor) 442
 Blockade of co-stimulation through CD40 and CD28 pathways 443
 T cell depletion 444
 Summary 445

References 445

21 Monoclonal antibody therapy in rheumatoid arthritis 449
 Ernest H. S. Choy, Gabrielle H. Kingsley, and Gabriel S. Penayi
 1 Introduction 449
 2 Pathogenesis of rheumatoid arthritis 449
 3 Treatment strategies in rheumatoid arthritis 450
 4 Therapeutic monoclonal antibodies 451
 5 Monoclonal antibodies in rheumatoid arthritis 452
 Anti-cytokine mAbs in rheumatoid arthritis 452
 Anti-adhesion molecule mAbs 454
 Anti-T cell mAbs in RA 455
 6 Conclusion 458
 Acknowledgements 459
 References 459

A1 List of suppliers 463

Index 469