Image Processing and Analysis
A Practical Approach

Edited by
RICHARD BALDOCK
MRC Human Genetics Unit,
Western General Hospital,
Crewe Road, Edinburgh EM4 2XU

and
JIM GRAHAM
University of Manchester,
Imaging Science and Biomedical Engineering
Stopford Building, Oxford Road,
Manchester M13 9PT

OXFORD UNIVERSITY PRESS
Contents

List of Contributors xvii
Abbreviations xix

1. Microscope image acquisition 1
 Stephanie L. Ellenberger and Ian T. Young
 1. Introduction 1
 Microscope systems 1
 Case study 2
 2. Basic optics 3
 Nature of light 3
 Illumination 7
 Optical system 9
 3. Microscope image acquisition system 12
 Microscope types and components 12
 Camera types and performance 19
 Images 28
 4. Application 29
 Objective 29
 Materials and methods 30
 Performance 34
 References 35

2. Biological image processing and enhancement 37
 G. W. Horgan, C. A. Reid, and C. A. Glasbey
 1. Introduction 37
 2. Contrast manipulation 39
 Functional transformation 40
 Histogram-based transformations 41
 Pseudocolour 42
 Thresholding 43
 Zooming 46
 3. Filtering 46
 Linear filters 46
 Non-linear filters 50
3. Image analysis: quantitative interpretation of chromosome images

Kenneth R. Castleman

1. Introduction
 The karyotyping problem
 Historical perspective
 Current practice
 Automatic karyotyping

2. Image segmentation
 Thresholding
 The watershed algorithm
 Gradient image thresholding
 Laplacian edge detection
 Edge detection and linking
 Region growing

3. Boundary refinement
 Active contours
 Binary image processing
 Morphological image processing
 Boundary curvature analysis
 Touch and overlap resolution

4. Chromosome measurement
 Morphological features
 Banding pattern features

5. Chromosome classification
 The Bayes classifier

6. Karotype generation
 Chromosome straightening
4. Pattern recognition: classification of chromosomes

Jim Graham

1. Introduction

2. The chromosome classification problem

3. Classification methods
 - Defining classification in terms of probabilities
 - Using Bayes’ formula
 - Non-parametric methods

4. Features and feature selection
 - Selecting features
 - Combining features
 - Clustering

5. Neural networks
 - Introduction
 - Supervised training
 - Unsupervised training

6. Classifying chromosomes
 - Features
 - Data sets
 - Classifiers

7. Classifier validation
 - The need for validation
 - Cross-validation, the jackknife and the bootstrap
 - The confusion matrix
 - Validating issues for neural networks
 - Training-set size and validation
 - Validation issues for the two-class problem

8. Available material
 - Software
 - Further reading
Contents

Acknowledgements 150
References 150

5. Three-dimensional (3D) reconstruction from serial sections 153

Fons J. Verbeek

1. Introduction 153
 3D reconstruction in microscopy 153
 Why serial sectioning is necessary 154

2. Methodological aspects 156
 Modes of action 158
 Organizing the reconstruction data 159
 Methods and devices for the input of the data 161
 Spatial resolution 166
 Alignment and deformation correction 166

3. Mathematical aspects 173
 Estimation of transformations 173
 Spatial transformation of image values 174
 Image correspondences 175
 Point-pattern matching methods 175
 Shape-based assessment methods 178
 Registration and congruencing using image moment 180
 Affine transform component estimation 181
 Evaluation using similarity measures 184
 Intensity-based methods 185

4. Systems for routine application of 3D reconstruction 186
 Reconstruction under rigid transformation 187
 Reconstruction including deformation correction 187

References 194

6. 3D analysis: registration of biomedical images 197

Daniel Rueckert and David J. Hawkes

1. Introduction 197
 Intra-subject registration 198
 Inter-subject registration 198
 Serial registration 198
 Image to physical space registration 198
 Overview 199
Contents

2. Registration transformation 200
 Rigid transformation 200
 Affine transformation 200
 Projective transformation 201
 Elastic or fluid transformation 201

3. Registration basis 202
 Point-based registration 202
 Contour- and surface-based registration 204
 Voxel-based registration 207

4. Optimization 211

5. Applications 212
 2D registration 212
 3D-3D rigid registration 212
 3D-3D non-rigid registration 214
 Validation 215

6. Summary 217
 Acknowledgements 218
 References 219

7. Model-based methods in analysis of biomedical images 223

Tim Cootes

1. Introduction 223
2. Background 224
3. Application 225
4. Theoretical background 227
 Building models 227
 Image interpretation with models 232
 Active shape models 234
5. Discussion 240
6. Implementation 242

Appendices
Aligning the training set 242
Principal component analysis 244
Applying a PCA when there are fewer samples than dimensions 245
Aligning two shapes 246

Acknowledgements 246
References 246
Contents

8. Projective stereology in biological microscopy 249
 Andrew D. Carothers
 1. Introduction 249
 2. Points and distances 250
 3. Lines 253
 4. Surface areas 254
 5. Volumes 255
 6. Applications 256
 Determining the order of three DNA loci 256
 Location of chromosomal domains in cell nuclei 257
 Size of chromosomal domains in cell nuclei 259
 7. Discussion 259
 Acknowledgements 260
 References 260

9. Image warping and spatial data mapping 261
 Richard A. Baldock and Bill Hill
 1. Introduction 261
 Notation and numerical methods 262
 2. Image comparison 264
 Binary image overlay 264
 Colour comparator 267
 Blink comparator 268
 3. Image re-sampling 269
 Nearest neighbour interpolation 270
 Bilinear interpolation 270
 Computational efficiency 270
 4. Defining correspondence 273
 5. Global transforms 274
 Affine 275
 Polynomial 278
 Conformal 279
 Thin-plate spline 282
 Multiquadric 284
 Gaussian 284
 6. Local transforms 285
 Simple mesh transformation 285
 Elastic plate warping 286