Magnetic Resonance Imaging
Physical Principles and Sequence Design

E. Mark Haacke, Ph.D.
Professor of Radiology, Electrical Engineering
and Biomedical Engineering
Washington University
St. Louis, MO
and
Professor of Physics
Case Western Reserve University
Cleveland, OH

Robert W. Brown, Ph.D.
Institute Professor of Physics
Case Western Reserve University
Cleveland, OH

Michael R. Thompson, Ph.D.
Picker International
Highland Heights, OH

Ramesh Venkatesan, D.Sc.
General Electric Medical Systems
Bangalore, India

WILEY-LISS
A JOHN WILEY & SONS, INC., PUBLICATION
New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
This book is printed on acid-free paper.

Copyright © 1999 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada.

While the authors, editors, and publisher believe that drug selection and dosage and the specification and usage of equipment and devices, as set forth in this book, are in accord with current recommendations and practice at the time of publication, they accept no legal responsibility for any errors or omissions, and make no warranty, express or implied, with respect to material contained herein. In view of ongoing research, equipment modifications, changes in governmental regulations and the constant flow of information relating to drug therapy, drug reactions, and the use of equipment and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each drug, piece of equipment, or device for, among other things, any changes in the instructions or indication of dosage and for added warnings and precautions.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008. E-Mail: PERMREQ@WILEY.COM.

For ordering and customer service, call 1-800-CALL-WILEY.

Library of Congress Cataloging-in-Publication Data:
Haacke, E. Mark
Magnetic resonance imaging : physical principles and sequence design /
by E. Mark Haacke ... [et al.].
 p. cm.
 Includes index.
 1. Magnetic resonance imaging. 2. Nuclear magnetic resonance.
 I. Haacke, E. Mark.
 1999]
RC78.7.N833M3473 1999
616.07/548—dc21
DNLM/DLC
for Library of Congress
99-22880
CIP

Printed in the United States of America.

1 0 9 8 7 6 5 4 3
Contents

1 Magnetic Resonance Imaging: A Preview .. 1
 1.1 Magnetic Resonance Imaging: The Name 1
 1.2 The Origin of Magnetic Resonance Imaging 2
 1.3 A Brief Overview of MRI Concepts ... 3
 1.3.1 Fundamental Interaction of a Proton Spin with the Magnetic Field 3
 1.3.2 Equilibrium Alignment of Spin .. 4
 1.3.3 Detecting the Magnetization of the System 5
 1.3.4 Magnetic Resonance Spectroscopy 7
 1.3.5 Magnetic Resonance Imaging ... 7
 1.3.6 Relaxation Times .. 8
 1.3.7 Resolution and Contrast .. 9
 1.3.8 Magnetic Field Strength .. 10
 1.3.9 Key Developments in Magnetic Resonance 10
 1.4 Suggested Reading ... 13

2 Classical Response of a Single Nucleus to a Magnetic Field 17
 2.1 Magnetic Moment in the Presence of a Magnetic Field 18
 2.1.1 Torque on a Current Loop in a Magnetic Field 18
 2.1.2 Magnet Toy Model .. 22
 2.2 Magnetic Moment with Spin: Equation of Motion 23
 2.2.1 Torque and Angular Momentum .. 23
 2.2.2 Angular Momentum of the Proton 24
 2.2.3 Electrons and Other Elements ... 25
 2.2.4 Equation of Motion ... 26
 2.3 Precession Solution: Phase ... 27
 2.3.1 Precession via the Gyroscope Analogy 27
 2.3.2 Geometrical Representation ... 28
 2.3.3 Cartesian Representation ... 30
 2.3.4 Matrix Representation ... 32
 2.3.5 Complex Representations and Phase 32

3 Rotating Reference Frames and Resonance 35
 3.1 Rotating Reference Frames ... 36
 3.2 The Rotating Frame for an RF Field ... 39
 3.2.1 Polarization ... 40

xv
14 Projection Reconstruction of Images

14.1 Radial k-Space Coverage
14.1.1 Coverage of k-Space at Different Angles
14.1.2 Two Radial Fourier Transform Examples
14.1.3 Inversion for Image Reconstruction

14.2 Sampling Radial k-Space and Nyquist Limits

14.3 Projections and the Radon Transform

14.4 Methods of Projection Reconstruction with Radial Coverage
14.4.1 X-Ray Analog
14.4.2 Back-Projection Method
14.4.3 Projection Slice Theorem and the Fourier Reconstruction Method
14.4.4 Filtered Back-Projection Method
14.4.5 Reconstruction of MR Images from Radial Data

14.5 Three-Dimensional Radial k-Space Coverage

14.6 Radial Coverage Versus Cartesian k-Space Coverage
14.6.1 Image Distortion Due to Off-Resonance Effects: Cartesian Coverage Versus Radial Sampling
14.6.2 Effects of Motion
14.6.3 Cartesian Sampling of Radially Collected Data

15 Signal, Contrast and Noise

15.1 Signal and Noise
15.1.1 The Voxel Signal
15.1.2 The Noise in MRI
15.1.3 Dependence of the Noise on Imaging Parameters
15.1.4 Improving SNR by Averaging over Multiple Acquisitions
15.1.5 Measurement of σ_0 and Estimation of SNR

15.2 SNR Dependence on Imaging Parameters
15.2.1 Generalized Dependence of SNR in 3D Imaging on Imaging Parameters
15.2.2 SNR Dependence on Read Direction Parameters
15.2.3 SNR Dependence on Phase Encoding Parameters
15.2.4 SNR in 2D Imaging
15.2.5 Imaging Efficiency

15.3 Contrast, Contrast-to-Noise and Visibility
15.3.1 Contrast and Contrast-to-Noise Ratio
15.3.2 Object Visibility and the Rose Criterion

15.4 Contrast Mechanisms in MRI and Contrast Maximization
15.4.1 Three Important Types of Contrast
15.4.2 Spin Density Weighting
15.4.3 T_1-Weighting
15.4.4 T_2-Weighting
15.4.5 Summary of Contrast Results
15.4.6 A Special Case: T_1-Weighting and Tissue Nulling with Inversion Recovery

15.5 Contrast Enhancement with T_1-Shortening Agents
18.1.4 Nonideal Slice Profile Effects on the SSI Signal 466
18.2 Short-T_R, Coherent, Gradient Echo Imaging 467
 18.2.1 Steady-State Free Precession: The Equilibrium Signal 472
 18.2.2 Approach to Coherent Steady-State 477
 18.2.3 Utility of SSC Imaging .. 480
18.3 SSFP Signal Formation Mechanisms .. 482
 18.3.1 Magnetization Rotation Effects of an Arbitrary Flip Angle Pulse 482
 18.3.2 Multi-Pulse Experiments and Echoes 485
18.4 Understanding Spoiling Mechanisms ... 500
 18.4.1 General Principles of Spoiling .. 500
 18.4.2 A Detailed Discussion of Spoiling 501
 18.4.3 Practical Implementation of Spoiling 506
 18.4.4 RF Spoiled SSI Sequence Implementation 510

19 Segmented k-Space and Echo Planar Imaging 513
19.1 Reducing Scan Times .. 514
 19.1.1 Reducing T_R .. 514
 19.1.2 Reducing the Number of Phase/Partition Encoding Steps 514
 19.1.3 Fixing the Number of Acquisitions 516
 19.1.4 Partial Fourier Data Acquisition 516
19.2 Segmented k-Space: Phase Encoding Multiple k-Space Lines per RF Excita-
 tion for Gradient Echo Imaging .. 516
 19.2.1 Conventional Multiple Echo Acquisition 517
 19.2.2 Phase Encoding Between Gradient Echoes 520
19.3 Echo Planar Imaging (EPI) .. 524
 19.3.1 An In-Depth Analysis of the EPI Imaging Parameters 528
 19.3.2 Signal-to-Noise .. 530
19.4 Alternate Forms of Conventional EPI .. 533
 19.4.1 Nonuniform Sampling .. 533
 19.4.2 Segmented EPI ... 534
 19.4.3 Angled k-Space EPI .. 537
 19.4.4 Segmented EPI with Oscillating Gradients 542
 19.4.5 Trapezoidal Versus Oscillating Waveforms 545
19.5 Artifacts and Phase Correction .. 546
 19.5.1 Phase Errors and Their Correction 546
 19.5.2 Chemical Shift and Geometric Distortion 547
 19.5.3 Geometric Distortion .. 549
 19.5.4 T_2^*-Filter Effects .. 551
 19.5.5 Ghosting ... 552
19.6 Spiral Forms of EPI .. 552
 19.6.1 Square-Spiral EPI .. 552
 19.6.2 Spiral EPI ... 556
19.7 An Overview of EPI Properties .. 560
 19.7.1 Speed of EPI ... 560
 19.7.2 Contrast Mechanisms .. 562
20 Magnetic Field Inhomogeneity Effects and T_2^* Dephasing

20.1 Image Distortion Due to Field Effects ... 570
 20.1.1 Distortion Due to Background Gradients Parallel to the Read Direction 570
 20.1.2 Distortion Due to Gradient Perpendicular to the Read Direction 575
 20.1.3 Slice Select Distortion .. 578

20.2 Echo Shifting Due to Field Inhomogeneities in Gradient Echo Imaging 580
 20.2.1 Echo Shift in Terms of Number of Sampled Points 583
 20.2.2 Echo Shift Due to Background Phase/Partition Encoding Gradients 585
 20.2.3 Echo Shift Due to Background Gradients Parallel to the Slice Select Direction ... 586
 20.2.4 Echo Shift Due to Background Gradients Orthogonal to the Slice Select Direction ... 587

20.3 Methods for Minimizing Distortion and Echo Shifting Artifacts 587
 20.3.1 Distortion Versus Dephasing .. 587
 20.3.2 High Resolution and Phase Dispersion 588
 20.3.3 2D Imaging .. 591
 20.3.4 2D Imaging with Variable Rephasing Gradients 593
 20.3.5 3D Imaging .. 594
 20.3.6 Phase Encoded 2D and 3D Imaging with Single-Point Sampling: A Limited Version of CSI ... 600
 20.3.7 Spectrally Resolved 2D and 3D Imaging 600
 20.3.8 Understanding the Recovered Signal with Spectral Collapsing 601

20.4 Empirical T_2^* .. 601
 20.4.1 Arbitrariness of T_2^* Modeling of Gradient Echo Signal Envelopes 602
 20.4.2 The Spin Echo Signal Envelope and the Magnetic Field Density of States 604
 20.4.3 Decaying Signal Envelopes and Integrated Signal Conservation 605
 20.4.4 Obtaining a Lorentzian Density of States: A Simple Argument 609
 20.4.5 Predicting the Effects of Arbitrary Field Inhomogeneities on the Image 609

20.5 Predicting T_2^* for Random Susceptibility Producing Structures 611
 20.6 Correcting Geometric Distortion ... 614

21 Random Walks, Relaxation and Diffusion .. 619
 21.1 Simple Model for Intrinsic T_2 .. 620
 21.1.1 Gaussian Behavior for Random Spin Systems 620
 21.1.2 Brownian Motion and T_2 Signal Loss 621

 21.2 Simple Model for Diffusion ... 622

 21.3 Carr-Purcell Mechanism .. 624

 21.4 Meiboom-Gill Improvement .. 627

 21.5 The Bloch-Torrey Equation .. 627
 21.5.1 The Gradient Echo Case for a Bipolar Pulse 628
21.5.2 The Spin Echo Case .. 629
21.5.3 Velocity Compensated Diffusion Weighted Sequences 631
21.6 Some Practical Examples of Diffusion Imaging 631

22 Spin Density, \(T_1 \) and \(T_2 \) Quantification Methods in MR Imaging 637
22.1 Simplistic Estimates of \(\rho_0, T_1 \) and \(T_2 \) 639
 22.1.1 Spin Density Measurement 639
 22.1.2 \(T_1 \) Measurement .. 639
 22.1.3 \(T_2 \) Measurement 640
22.2 Estimating \(T_1 \) and \(T_2 \) from Signal Ratio Measurements 640
 22.2.1 \(T_1 \) Estimation from a Signal Ratio Measurement 641
 22.2.2 \(T_2 \) Estimation .. 646
22.3 Estimating \(T_1 \) and \(T_2 \) from Multiple Signal Measurements 648
 22.3.1 Parameter Estimation from Multiple Signal Measurements 648
 22.3.2 \(T_1 \) Estimation .. 648
 22.3.3 \(T_2 \) and \(T_2^* \) Estimation 650
22.4 Other Methods for Spin Density and \(T_1 \) Estimation 650
 22.4.1 The Look-Locker Method 650
 22.4.2 \(T_1 \) Estimation from SSI Measurements at Multiple Flip
 Angles .. 654
22.5 Practical Issues Related to \(T_1 \) and \(T_2 \) Measurements 657
 22.5.1 Inaccuracies Due to Nonideal Slice Profile 657
 22.5.2 Other Sources of Inaccuracies in Relaxation Time and Spin Density
 Measurements .. 661
 22.5.3 Advanced Sequence Design for Relaxation Time and Spin Density
 Measurements .. 663
 22.5.4 Choice of Number of Signal Measurement Points 664
22.6 Calibration Materials for Relaxation Time Measurements 665

23 Motion Artifacts and Flow Compensation 669
23.1 Effects on Spin Phase from Motion along the Read Direction 670
 23.1.1 Spin Phase Due to Constant Velocity Flow or Motion in the Read
 Direction ... 670
 23.1.2 Effects of Constant Velocity Flow on the Image 673
23.2 Velocity Compensation along the Read and Slice Select Directions 676
 23.2.1 Velocity Compensation Concepts 676
 23.2.2 Velocity Compensation along the Slice Select Direction 682
23.3 Ghosting Due to Periodic Motion 682
 23.3.1 Ghosting Due to Periodic Flow 682
 23.3.2 Sinusoidal Translational Motion 684
 23.3.3 Examples of Ghosting from Pulsatile Flow 688
23.4 Velocity Compensation along Phase Encoding Directions 690
 23.4.1 Effects of Constant Velocity Flow in the Phase Encoding Direction:
 The Misregistration Artifact 690
 23.4.2 Phase Variation View of the Shift Artifact 690
Contents

23.4.3 Velocity Compensating Phase Encoding Gradients .. 694
23.5 Maximum Intensity Projection .. 697

24 MR Angiography and Flow Quantification ... 703
24.1 Inflow or Time-of-Flight (TOF) Effects ... 704
 24.1.1 Critical Speeds ... 704
 24.1.2 Approach to Equilibrium ... 705
 24.1.3 2D Imaging .. 707
 24.1.4 3D Imaging .. 709
 24.1.5 Understanding Inflow Effects for Small Velocities 713
24.2 TOF Contrast, Contrast Agents and Spin Density/T_2^*-Weighting 713
 24.2.1 Contrast Agents ... 714
 24.2.2 Suppressing Signal from Inflowing Blood Using an Inversion Pulse 720
 24.2.3 Suppressing Signal from Inflowing Blood Using a Saturation Pulse 721
24.3 Phase Contrast and Velocity Quantification ... 725
 24.3.1 Phase Subtraction and Complex Division for Measuring Velocity 727
 24.3.2 Four-Point Velocity Vector Extraction ... 731
24.4 Flow Quantification ... 734
 24.4.1 Cardiac Gating ... 735

25 Magnetic Properties of Tissues: Theory and Measurement 741
25.1 Paramagnetism, Diamagnetism and Ferromagnetism 742
 25.1.1 Paramagnetism ... 742
 25.1.2 Diamagnetism .. 743
 25.1.3 Ferromagnetism .. 744
25.2 Permeability and Susceptibility: The \vec{H} Field .. 746
 25.2.1 Permeability and the \vec{H} Field .. 746
 25.2.2 Susceptibility .. 747
25.3 Objects in External Fields: The Lorentz Sphere ... 749
 25.3.1 Spherical Body ... 749
 25.3.2 Infinite Cylindrical Body ... 751
 25.3.3 Local Field Cancellation via Molecular Demagnetization 753
 25.3.4 Sphere and Cylinder Examples Revisited: The Physical Internal Fields 755
25.4 Susceptibility Imaging ... 757
 25.4.1 Phase Measurements .. 757
 25.4.2 Magnitude Measurements ... 762
25.5 Brain Functional MRI and the BOLD Phenomenon .. 765
 25.5.1 Estimation of Oxygenation Levels ... 765
 25.5.2 Deoxyhemoglobin Concentration and Flow ... 766
 25.5.3 Functional MR Imaging (fMRI): An Example 767
25.6 Signal Behavior in the Presence of Deoxygenated Blood 769
 25.6.1 The MR Properties of Blood ... 769
 25.6.2 Two-Compartment Partial Volume Effects on Signal Loss 771
Contents

27.4.5 Power Deposition ... 858

A Electromagnetic Principles: A Brief Overview 863
 A.1 Maxwell’s Equations 864
 A.2 Faraday’s Law of Induction 864
 A.3 Electromagnetic Forces 865
 A.4 Dipoles in an Electromagnetic Field 866
 A.5 Formulae for Electromagnetic Energy 866
 A.6 Static Magnetic Field Calculations 867

B Statistics 869
 B.1 Accuracy Versus Precision 869
 B.1.1 Mean and Standard Deviation 870
 B.2 The Gaussian Probability Distribution 871
 B.2.1 Probability Distribution 871
 B.2.2 z-Score .. 871
 B.2.3 Quoting Errors and Confidence Intervals 872
 B.3 Type I and Type II Errors 872
 B.4 Sum over Several Random Variables 874
 B.4.1 Multiple Noise Sources 875
 B.5 Rayleigh Distribution 876
 B.6 Experimental Validation of Noise Distributions 878
 B.6.1 Histogram Analysis 878
 B.6.2 Mean and Standard Deviation 878

C Imaging Parameters to Accompany Figures 883

Index 893