Computational Methods in Molecular Biology

Editors

Steven L. Salzberg
The Institute for Genomic Research,
9712 Medical Center Drive, Rockville, MD 20850, USA

David B. Searls
SmithKline Beecham Pharmaceuticals, 709 Swedeland Road,
P.O. Box 1539, King of Prussia, PA 19406, USA

Simon Kasif
Department of Electrical Engineering and Computer Science,
University of Illinois at Chicago, Chicago, IL 60607-7053, USA

ELSEVIER
Amsterdam · Lausanne · New York · Oxford · Shannon · Singapore · Tokyo
Contents

Preface .. vii
List of contributors xi
Other volumes in the series xxv

I – Introduction and Tutorial Background

Chapter 1. Grand challenges in computational biology
David B. Sears ... 3
1. Introduction ... 3
2. Protein structure prediction 4
3. Homology search 5
4. Multiple alignment and phylogeny construction ... 6
5. Genomic sequence analysis and gene-finding 7
6. Conclusion .. 8
References .. 9

Chapter 2. A tutorial introduction to computation for biologists
Steven L. Salzberg 11
1. Who should read the tutorials? 11
2. Basic computational concepts 11
 2.1. What is an algorithm? 12
 2.2. How fast is a program? 13
 2.3. Computing time is a function of input size 14
 2.4. Space requirements also vary with input size ... 15
 2.5. Really expensive computations 15
3. Machine learning concepts 16
 3.1. Learning from data 16
 3.2. Memory-based reasoning 17
4. Where to store learned knowledge 17
 4.1. Decision trees 18
 4.2. Neural networks 19
5. Search .. 19
 5.1. Defining a search space 20
 5.2. Search space size 20
 5.3. Tree-based search 21
6. Dynamic programming 22
7. Basic statistics and Markov chains 24
Chapter 3. An introduction to biological sequence analysis

Kenneth H. Fasman and Steven L. Salzberg

1. Introduction .. 29
2. A little molecular biology 29
3. Frequency analysis ... 30
4. Measuring homology by pairwise alignment 31
5. Database searching ... 33
6. Multiple alignment .. 33
7. Finding regions of interest in nucleic acid sequence 34
8. Gene finding ... 35
9. Analyzing protein sequence 38
10. Whole genome analysis 39
Acknowledgments ... 40
References ... 40

II - Learning and Pattern Discovery in Sequence Databases

Chapter 4. An introduction to hidden Markov models for biological sequences

Anders Krogh

1. Introduction .. 45
2. From regular expressions to HMMs 46
3. Profile HMMs ... 49
 3.1. Pseudocounts ... 50
 3.2. Searching a database 54
 3.3. Model estimation 55
4. HMMs for gene finding 56
 4.1. Signal sensors .. 57
 4.2. Coding regions 58
 4.3. Combining the models 59
5. Further reading .. 60
Acknowledgments ... 62
References ... 62

Chapter 5. Case-based reasoning driven gene annotation

G. Christian Overton and Juergen Haas

1. Introduction .. 65
2. Case-based reasoning 66
3. CBR in biology .. 67
4. Annotating gene and promoter regions by CBR 68
5. Building the case-base 70
 5.1. Data cleansing with the sequence structure parser 70
 5.2. Structure and content 73
6. Classification of new cases 75

References ... 75
Chapter 6. Classification-based molecular sequence analysis
David J. States and William C. Reisdorf, Jr. 87

1. Introduction .. 87
 1.1. Molecular evolution 88
 1.2. Sequence annotation 89
 1.3. Artifacts due to sequence and database errors 91
 1.4. Sequence classification 91
 1.5. Sequence similarity search 92

2. A taxonomy of existing classifications 93
 2.1. Domains versus molecules 93
 2.2. Sequence versus structure 94
 2.3. Clustering methods 94
 2.4. Hierarchic versus atomic classifications 95
 2.5. Manual, supervised and fully automated 95

3. Databases of protein sequence/structure classification .. 95
 3.1. Nucleic acid sequence classifications 99
 3.2. Tertiary-structure-based classifications 99
 3.3. Assessing classifications 102

Acknowledgments ... 103
References ... 103

Chapter 7. Computational gene prediction using neural networks and similarity search
Ying Xu and Edward C. Uberbacher 109

1. Introduction .. 109

2. Exon prediction by neural networks 110
 2.1. Coding region recognition 111
 2.2. Splice junction recognition 113
 2.3. Information fusion 114

3. Predicting coding regions in erroneous DNA 117
 3.1. Localization of transition points 117

4. Reference-based gene structure prediction 120
 4.1. EST-based reference model construction 120
 4.2. Reference-based gene modeling 121

5. Conclusion ... 127

References ... 127
Chapter 8. Modeling dependencies in pre-mRNA splicing signals

Christopher B. Burge

List of abbreviations
1. Introduction
2. Review of pre-mRNA splicing
3. Signal prediction
4. Probabilistic models of signal sequences
 4.1. The directionality of Markov models
5. Datasets
6. Weight matrix models and generalizations
 6.1. Positional odds ratios
 6.2. The branch point region
 6.3. Parameter estimation error
 6.4. A windowed weight array model
7. Measuring dependencies between positions
 7.1. Dependencies in acceptor splice signals
 7.2. Dependence structure of the donor splice signal
8. Modeling complex dependencies in signals
 8.1. Maximal dependence decomposition
9. Conclusions and further reading
Acknowledgments
References

Chapter 9. Evolutionary approaches to computational biology

Rebecca J. Parsons

1. Introduction
 1.1. Optimization problems
2. Evolutionary computation
 2.1. Landscape of evolutionary approaches
 2.1.1. Genetic algorithms
 2.1.2. Evolutionary strategies
 2.1.3. Genetic programming
 2.2. A primer on genetic algorithms
 2.2.1. Fitness function
 2.2.2. Representation
 2.2.3. Genetic operators and selection mechanism
 2.2.4. Control parameters
 2.3. Putting the pieces of the genetic algorithm together
3. Assembling the DNA sequence jigsaw puzzle
4. Design for DNA sequence assembly
 4.1. Choosing the right representation
 4.2. Permutation-specific operators
5. Problem-specific operators
 5.1. How to set the parameters
6. Good versus best answers
7. Future directions
8. Conclusions
References
Chapter 10. Decision trees and Markov chains for gene finding

Steven L. Salzberg

Introduction 187
1. A tutorial introduction to decision trees 187
1.1. Induction of decision trees 188
1.2. Splitting rules 189
1.3. Pruning rules 190
1.4. Internet resources for decision tree software 191
2. Decision trees to classify sequences 192
2.1. Coding measures 192
3. Decision trees as probability estimators 193
4. MORGAN, a decision tree system for gene finding 194
4.1. The MORGAN framework 195
4.2. Markov chains to find splice sites 195
4.3. Parsing DNA with dynamic programming 196
4.4. Frame consistent dynamic programming 198
4.5. Downstream sequence 198
5. Data and experiments 199
6. Next steps: interpolated Markov models 201
7. Summary 202
Acknowledgments 202
References 202

III – Protein Structure Modeling and Prediction

Chapter 11. Statistical analysis of protein structures. Using environmental features for multiple purposes

Liping Wei, Jeffrey T. Chang and Russ B. Altman

List of Abbreviations 207
1. Protein structures in three dimensions 207
2. Statistics, probability, and machine learning concepts 209
2.1. Statistical inference from two sets of data 209
2.2. Classification problems and evaluation of classification algorithms 210
2.3. Conditional probability and Bayes’ Rule 211
3. Statistical description of protein structures 212
4. Applications of statistical analysis of protein structures 213
4.1. Characterizing the microenvironment surrounding protein sites 214
4.2. Recognizing protein sites using environmental statistics 216
4.3. Comparing the environments of amino acids and constructing a substitution matrix 219
4.4. Threading a protein sequence onto a fold 221
4.4.1. Library of folds 222
4.4.2. Alignments 223
4.4.3. Generating and scoring actual and sample structures 223
5. Summary 224
Acknowledgments 224
References 225
Chapter 12. Analysis and algorithms for protein sequence–structure alignment

Chapter overview 227
1. Introduction 227
 1.1. Why is it hard? 228
 1.2. Why threading? 229
2. Protein threading – motivating intuitions 230
 2.1. Basic ideas 230
 2.2. Common assumptions of current threading work 231
 2.3. Principal requirements for structure prediction 231
 2.3.1. Library members (requirement i) 233
 2.3.2. Objective function (requirement ii) 235
 2.3.3. Alignment (requirement iii) 235
 2.3.4. Core template selection or fold recognition (requirement iv) 236
 2.4. Gapped block alignment 236
3. Formalization 237
 3.1. Sequence 239
 3.2. Core templates and library 239
 3.3. Loops 240
 3.4. Adjacency graph 240
 3.5. A threading of a sequence into a core 240
 3.6. Sets of threadings 241
 3.7. Objective function 242
 3.7.1. The fully general objective function 242
 3.7.2. General pairwise interaction objective function 243
 3.7.3. A typical pairwise score function 243
 3.7.4. Computing \(g_1 \) and \(g_2 \) efficiently 244
 3.7.5. Singleton-only objective function 244
 3.7.6. Per-residue singleton-only objective function 245
4. Analysis – selection tasks 246
 4.1. Bayesian analysis 247
 4.1.1. Prior probabilities 247
 4.1.2. Global sums 248
 4.2. Selecting an alignment given a core template 248
 4.3. Selecting a core template 249
 4.4. Selecting structure and alignment jointly 249
 4.5. Selecting individual core segment alignments 250
 4.6. Super-secondary structures, or core template subsets 250
 4.7. Secondary structure prediction 251
 4.8. Variable \(Z_{\alpha(c,i)} \) 252
 4.9. Recurrence equations for singleton-only objective functions 252
 4.9.1. Equations for \(Z_{\alpha(c,i)} \) 253
 4.9.2. Recurrence equations for \(\mu_{\alpha(c,i)} \) 253
 4.9.3. Recurrence equations for \(\mu_{\alpha(c,i),a} \) 253
 4.9.4. Recurrence equations for \(\mu_{\alpha(c,i,j)} \) 254
 4.9.5. Recurrence equation invariants 255
 4.10. Recurrence equations for per-residue singleton-only objective functions 255
5. Analysis – search space tasks 256
5.1. Lower bound on scores in threading sets .. 256
5.1.1. Lower bound invariants ... 257
5.2. Splitting threading sets ... 257
6. Analysis — search space formulae .. 259
6.1. Fast approximate formulae .. 259
6.1.1. Computing P_1 and P_2 efficiently .. 260
6.2. Exact search space size, probabilities, and uniform sampling 260
6.2.1. Search space size ... 260
6.2.2. Exact segment placement probabilities ... 261
6.2.3. Uniform random sampling .. 261
6.3. Exact analytic search space mean and standard deviation 261
6.4. Computing the exact analytic mean and standard deviation efficiently 262
7. Computational complexity ... 262
7.1. Computational complexity and NP-completeness 263
7.2. Alignment — informal sketch of proof ... 265
7.3. Selection tasks and Bayes’ constants ... 267
7.3.1. Complexity of $\mu_{(a,c)}$.. 267
7.3.2. Complexity of $Z_{(a,c)}$.. 267
7.3.3. Complexity of $\mu_{(a,c,i,j)}$ and $\mu_{(a,c,i,j)}$ 267
8. Search algorithm ... 267
8.1. Branch and bound algorithm ... 268
8.2. Algorithm pseudo-code .. 269
8.3. Lower bound implementation .. 269
8.3.1. Implementation ... 269
8.3.2. Computing the lower bound efficiently .. 271
9. Computational experiments ... 272
9.1. Core template library .. 272
9.2. Problem size and computation time ... 273
10. Discussion ... 277
10.1. Scoring schemes .. 278
11. Conclusions ... 279
Acknowledgments .. 280
References ... 280

Chapter 13. THREADER: protein sequence threading by double dynamic programming

David Jones .. 285
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Searching for the optimal threading</td>
<td>302</td>
</tr>
<tr>
<td>11. Methods for combinatorial optimization</td>
<td>303</td>
</tr>
<tr>
<td>11.1. Exhaustive search</td>
<td>303</td>
</tr>
<tr>
<td>11.2. Monte Carlo methods</td>
<td>303</td>
</tr>
<tr>
<td>11.3. Dynamic programming</td>
<td>304</td>
</tr>
<tr>
<td>11.4. Double dynamic programming</td>
<td>305</td>
</tr>
<tr>
<td>12. Residue selection for sequence-structure alignments</td>
<td>308</td>
</tr>
<tr>
<td>13. Evaluating the method</td>
<td>309</td>
</tr>
<tr>
<td>14. Software availability</td>
<td>310</td>
</tr>
<tr>
<td>References</td>
<td>310</td>
</tr>
</tbody>
</table>

Chapter 14. From computer vision to protein structure and association

Haim J. Wolfson and Ruth Nussinov

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>313</td>
</tr>
<tr>
<td>2. Problem formulation</td>
<td>315</td>
</tr>
<tr>
<td>3. Molecular surface representation and interest feature extraction</td>
<td>315</td>
</tr>
<tr>
<td>3.1. Caps, pits, and belts</td>
<td>316</td>
</tr>
<tr>
<td>3.2. Knobs and holes</td>
<td>317</td>
</tr>
<tr>
<td>4. Interest point correspondence</td>
<td>317</td>
</tr>
<tr>
<td>5. Large protein–protein docking</td>
<td>319</td>
</tr>
<tr>
<td>5.1. The algorithm</td>
<td>319</td>
</tr>
<tr>
<td>5.1.1. Knob and hole extraction</td>
<td>320</td>
</tr>
<tr>
<td>5.1.2. Interest point matching</td>
<td>320</td>
</tr>
<tr>
<td>5.1.3. Clustering of transformations</td>
<td>320</td>
</tr>
<tr>
<td>5.1.4. Verification of penetration and scoring</td>
<td>321</td>
</tr>
<tr>
<td>5.2. Experimental results</td>
<td>321</td>
</tr>
<tr>
<td>6. The Geometric-Hashing-based docking method</td>
<td>324</td>
</tr>
<tr>
<td>6.1. The algorithm</td>
<td>324</td>
</tr>
<tr>
<td>6.1.1. Reference frame definition</td>
<td>325</td>
</tr>
<tr>
<td>6.1.2. Ligand preprocessing</td>
<td>326</td>
</tr>
<tr>
<td>6.1.3. Recognition</td>
<td>326</td>
</tr>
<tr>
<td>6.1.4. Implementation details</td>
<td>328</td>
</tr>
<tr>
<td>6.1.5. Choice of reference sets</td>
<td>328</td>
</tr>
<tr>
<td>6.1.5.1. Distance constraint</td>
<td>328</td>
</tr>
<tr>
<td>6.1.5.2. Directional constraints</td>
<td>328</td>
</tr>
<tr>
<td>6.1.6. Choice of points belonging to a reference set</td>
<td>328</td>
</tr>
<tr>
<td>6.1.7. Voting constraints</td>
<td>329</td>
</tr>
<tr>
<td>6.1.8. Aligning the receptor with the ligand</td>
<td>329</td>
</tr>
<tr>
<td>6.1.9. Improvement of the transformation</td>
<td>329</td>
</tr>
<tr>
<td>6.1.10. Verification of penetration and contact scoring</td>
<td>329</td>
</tr>
<tr>
<td>6.2. Experimental results</td>
<td>330</td>
</tr>
<tr>
<td>7. Further developments and future tasks</td>
<td>332</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>333</td>
</tr>
<tr>
<td>References</td>
<td>333</td>
</tr>
</tbody>
</table>

Chapter 15. Modeling biological data and structure with probabilistic networks

Simon Kasif and Arthur L. Delcher

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>335</td>
</tr>
</tbody>
</table>

References | 335 |