Methods in Cell Biology
Prepared under the Auspices of the American Society for Cell Biology

VOLUME 58
Green Fluorescent Proteins

Edited by
Kevin F. Sullivan
Department of Cell Biology
The Scripps Research Institute
La Jolla, California

Steve A. Kay
Department of Cell Biology
The Scripps Research Institute
La Jolla, California

ACADEMIC PRESS
San Diego London Boston New York Sydney Tokyo Toronto
Cover photo credit (paperback edition only): Mitosis in human cells is revealed by fluorescence microscopy showing GFP-labeled chromosomes that have incorporated a histone H2B-GFP fusion protein (green) coupled with immunofluorescence imaging of microtubules (blue) and centromeres (orange). The image was acquired using a Bio-Rad MRC-1024 confocal microscope. Provided by Kevin P. Sullivan.

This book is printed on acid-free paper.

Copyright © 1999 by ACADEMIC PRESS

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-1999 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters.

0091-679X/99 $25.00

Academic Press
a division of Harcourt Brace & Company
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http://www.apnet.com

Academic Press Limited
24-28 Oval Road, London NW1 7DX, UK
http://www.hbuk.co.uk/ap/

International Standard Book Number: 0-12-544160-6 (case)
International Standard Book Number: 0-12-676075-6 (pb)

PRINTED IN THE UNITED STATES OF AMERICA

98 99 00 01 02 03 LB 9 8 7 6 5 4 3 2 1
CONTENTS

Contributors
Preface

1. Biophysics of the Green Fluorescent Protein
F. G. Prendergast
I. Introduction
II. Protein Folding and the Generation of This Chromophore
III. The Biophysics of the Fluorescence of GTP
IV. Resonance Energy Transfer Involving GFP
V. Summary
References

2. Understanding Structure–Function Relationships in the _Aequorea victoria_ Green Fluorescent Protein
A. B. Cubitt, L. A. Woollenweber, and R. Heim
I. Introduction
II. Structure
III. Chromophore Formation
IV. Effects of Mutations on the Spectroscopic Properties of GFP
V. Effects of Mutations That Improve Thermosensitivity
VI. The Development of Enhanced Mutants
References

3. Quantitative Imaging of the Green Fluorescent Protein (GFP)
D. W. Piston, G. H. Patterson, and S. M. Knobel
I. Introduction
II. Factors That Influence/Limit Quantitation of GFP in Fluorescence Microscopy
III. Applications of LSCM for Quantitative Imaging of GFP
IV. Preparation of Purified GFP Samples
References

4. Single-Molecule Fluorescence Detection of Green Fluorescence Protein and Application to Single-Protein Dynamics
D. W. Pierce and R. D. Vale
I. Introduction
II. Design Considerations for Fluorescence Microscopes for Single-Molecule Detection

<table>
<thead>
<tr>
<th>Contributors</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Biophysics of the Green Fluorescent Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. G. Prendergast</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. Protein Folding and the Generation of This Chromophore</td>
</tr>
<tr>
<td>III. The Biophysics of the Fluorescence of GTP</td>
</tr>
<tr>
<td>IV. Resonance Energy Transfer Involving GFP</td>
</tr>
<tr>
<td>V. Summary</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Understanding Structure–Function Relationships in the Aequorea victoria Green Fluorescent Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. B. Cubitt, L. A. Woollenweber, and R. Heim</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. Structure</td>
</tr>
<tr>
<td>III. Chromophore Formation</td>
</tr>
<tr>
<td>IV. Effects of Mutations on the Spectroscopic Properties of GFP</td>
</tr>
<tr>
<td>V. Effects of Mutations That Improve Thermosensitivity</td>
</tr>
<tr>
<td>VI. The Development of Enhanced Mutants</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Quantitative Imaging of the Green Fluorescent Protein (GFP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. W. Piston, G. H. Patterson, and S. M. Knobel</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. Factors That Influence/Limit Quantitation of GFP in Fluorescence Microscopy</td>
</tr>
<tr>
<td>III. Applications of LSCM for Quantitative Imaging of GFP</td>
</tr>
<tr>
<td>IV. Preparation of Purified GFP Samples</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Single-Molecule Fluorescence Detection of Green Fluorescence Protein and Application to Single-Protein Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. W. Pierce and R. D. Vale</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. Design Considerations for Fluorescence Microscopes for Single-Molecule Detection</td>
</tr>
<tr>
<td>9. GFP Variants for Multispectral Imaging of Living Cells</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>James Haseloff</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. Green Fluorescent Protein Markets</td>
</tr>
<tr>
<td>III. Imaging of Living Cells</td>
</tr>
<tr>
<td>IV. Marking Different Cell Types in Arabidopsis</td>
</tr>
<tr>
<td>V. Spectrally Distinct Fluorescent Proteins for Multichannel Confocal Microscopy</td>
</tr>
<tr>
<td>VI. Summary</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>139</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>143</td>
</tr>
<tr>
<td>146</td>
</tr>
<tr>
<td>147</td>
</tr>
<tr>
<td>149</td>
</tr>
<tr>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. GFP Fusions to a Microtubule Motor Protein to Visualize Meiotic and Mitotic Spindle Dynamics in Drosophila</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharyn A. Endow</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. Labeling Strategies</td>
</tr>
<tr>
<td>III. Imaging GFP</td>
</tr>
<tr>
<td>IV. Applications of Ncd-GFP Imaging</td>
</tr>
<tr>
<td>V. Perspectives</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>153</td>
</tr>
<tr>
<td>154</td>
</tr>
<tr>
<td>156</td>
</tr>
<tr>
<td>159</td>
</tr>
<tr>
<td>162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. GFP as a Cell and Developmental Marker in the Drosophila Nervous System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrea Brand</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. Targeted Expression of GFP in Drosophila</td>
</tr>
<tr>
<td>III. Lines for Expression of GFP</td>
</tr>
<tr>
<td>IV. Visualizing GFP Expression</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>165</td>
</tr>
<tr>
<td>168</td>
</tr>
<tr>
<td>168</td>
</tr>
<tr>
<td>175</td>
</tr>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Using Time-Lapse Confocal Microscopy for Analysis of Centromere Dynamics in Human Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevin F. Sullivan and Richard D. Shelby</td>
</tr>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>II. GFP Fusion Proteins</td>
</tr>
<tr>
<td>III. Microscopy</td>
</tr>
<tr>
<td>IV. Analysis</td>
</tr>
<tr>
<td>V. Summary</td>
</tr>
<tr>
<td>Appendix: Handling Confocal Images on the Laboratory Computer</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>183</td>
</tr>
<tr>
<td>184</td>
</tr>
<tr>
<td>185</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>194</td>
</tr>
<tr>
<td>195</td>
</tr>
<tr>
<td>200</td>
</tr>
</tbody>
</table>
13. Visualization of Large-Scale Chromatin Structure and Dynamics Using the \textit{lac} Operator/\textit{lac} Repressor Reporter System

\textit{Andrew S. Belmont, Gang Li, Gail Sudlow, and Carmen Robinett}

I. Introduction
II. Overview of Methodology
III. Construction of the \textit{lac} Operator Repeat
IV. Manipulation of the \textit{lac} Operator Repeats
V. Repressor-NLS and GFP-Repressor-NLS Constructs
VI. Gene Amplification and Cell Cloning
VII. Repressor Staining and Immunodetection of the \textit{lac} Operator Repeat
VIII. \textit{In Vivo} Observation of GFP–Repressor Localization
IX. Phototoxicity Issues
X. Present Results and Future Directions

References

14. Centrosome Dynamics in Living Cells

\textit{Aaron Young, Richard Tuft, Walter Carrington, and Stephen J. Doxsey}

I. Introduction
II. Cloning and Expression of GFP–Pericentrin
III. High-Speed Microscopy
IV. Image Restoration by an Improved Deconvolution Method
V. Imaging Centrosomes
VI. Postimaging Confirmation of Centrosome Integrity and Function

References

15. Transfections of Primary Muscle Cell Cultures with Plasmids Coding for GFP Linked to Full-Length and Truncated Muscle Proteins

\textit{Guissou A. Dabiri, Kenan K. Turnacioglu, Joseph C. Ayoob, Jean M. Sanger, and Joseph W. Sanger}

I. Introduction
II. Construction of GFP-Linked Muscle Proteins
III. Preparation of Embryonic Avian Cardiomyocytes and Skeletal Muscle Myoblasts
IV. Methods of Transfection of Cross-Striated Cells in Culture
V. Transfection of Cross-Striated Muscle Cells with Full-Length cDNA for Sarcomeric Proteins
VI. Microscopic Observations of Live Cells
VII. Postprocessing of Transfected Cells
VIII. Problems Encountered in Cells Transfected with GFP–Sarcomeric Proteins
IX. Overview

References
19. Flow Cytometric Analysis and FACS Sorting of Cells Based on GFP Accumulation

 David W. Galbraith, Michael T. Anderson, and Leonard A. Herzenberg

 I. General Introduction 315
 II. Methods and Specific Applications 319
 III. Typical Results 328
 IV. Discussion and Conclusions 335
 References 338

20. GFP Biofluorescence: Imaging Gene Expression and Protein Dynamics in Living Cells

 Paul C. Goodwin

 I. Introduction 344
 II. Facilities 345
 III. Maintaining Cells 347
 IV. Imaging Systems 349
 V. Computer Systems 355
 VI. Output 359
 VII. Conclusions 365
 References 366

Index 369