Atom–Photon Interactions

Basic Processes and Applications

Claude Cohen-Tannoudji
Jacques Dupont-Roc
Gilbert Grynberg

WILEY SCIENCE PAPERBACK SERIES PUBLISHED 1998
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I TRANSITION AMPLITUDES IN ELECTRODYNAMICS</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>A. Probability Amplitude Associated with a Physical Process</td>
<td>7</td>
</tr>
<tr>
<td>B. Time Dependence of Transition Amplitudes</td>
<td>9</td>
</tr>
<tr>
<td>1. Coupling between Discrete Isolated States</td>
<td>9</td>
</tr>
<tr>
<td>2. Resonant Coupling between a Discrete Level and a Continuum</td>
<td>10</td>
</tr>
<tr>
<td>3. Couplings inside a Continuum or between Continua</td>
<td>12</td>
</tr>
<tr>
<td>C. Application to Electrodynamics</td>
<td>15</td>
</tr>
<tr>
<td>1. Coulomb Gauge Hamiltonian</td>
<td>15</td>
</tr>
<tr>
<td>2. Expansion in Powers of the Charges q_a</td>
<td>16</td>
</tr>
<tr>
<td>3. Expansion in Powers of the Interaction with the Transverse Field</td>
<td>17</td>
</tr>
<tr>
<td>4. Advantages of Including the Coulomb Interaction in the Particle Hamiltonian</td>
<td>18</td>
</tr>
<tr>
<td>5. Diagrammatic Representation of Transition Amplitudes</td>
<td>19</td>
</tr>
</tbody>
</table>
| **COMPLEMENT A,
PERTURBATIVE CALCULATION OF TRANSITION AMPLITUDES—SOME USEFUL RELATIONS** | |
| Introduction | 23 |
| 1. Interaction Representation | 23 |
Contents

2. Perturbative Expansion of Transition Amplitudes—
b. First-Order Transition Amplitude.
c. Second-Order Transition Amplitude.
3. Transition Probability—
a. Calculation of the Transition Probability to a Final State Different from the Initial State.
d. Transition Rate toward a Continuum of Final States.
e. Case Where both the Initial and Final States Belong to a Continuum

COMPLEMENT B1—DESCRIPTION OF THE EFFECT OF A PERTURBATION BY AN EFFECTIVE HAMILTONIAN

1. Introduction—Motivation
2. Principle of the Method
3. Determination of the Effective Hamiltonian—
a. Iterative Calculation of S.
c. Higher-Order Terms
4. Case of Two Interacting Systems

COMPLEMENT C1—DISCRETE LEVEL COUPLED TO A BROAD CONTINUUM: A SIMPLE MODEL

Introduction

1. Description of the Model—
a. The Discrete State and the Continuum.
b. Discretization of the Continuum.
c. Simplifying Assumptions
a. The Eigenvalue Equation.
b. Graphic Determination of the New Eigenvalues.
c. Probability Density of the Discrete State in the New Continuum
3. A Few Applications of This Simple Model—
b. Excitation of the System in the Discrete Level from Another State.
c. Resonant Scattering through a Discrete Level.
d. Fano Profiles
4. Generalization to More Realistic Continua. Diagonalization of the Hamiltonian without Discretization
II

A SURVEY OF SOME INTERACTION PROCESSES BETWEEN PHOTONS AND ATOMS

Introduction ... 67

A. Emission Process: A New Photon Appears ... 69
 1. Spontaneous Emission between Two Discrete Atomic Levels. Radiative Decay of an
 c. Nonperturbative Results ... 69
 2. Spontaneous Emission between a Continuum State and a Discrete State—a. First Example:
 Radiative Capture. b. Second Example: Radiative Dissociation of a Molecule 73
 3. Spontaneous Emission between Two States of the Ionization Continuum—Bremsstrahlung 76

B. Absorption Process: A Photon Disappears ... 78
 1. Absorption between Two Discrete States .. 78
 2. Absorption between a Discrete State and a Continuum State—a. First Example:
 Photoionization. b. Second Example: Photodissociation .. 79
 3. Absorption between Two States of the Ionization Continuum: Inverse Bremsstrahlung 82

C. Scattering Process: A Photon Disappears and Another Photon Appears 86
 1. Scattering Amplitude—Diagrammatic Representation ... 86
 2. Different Types of Photon Scattering by an Atomic or Molecular System—a. Low-Energy
 Elastic Scattering: Rayleigh Scattering. b. Low-Energy Inelastic Scattering:
 Inelastic Scattering with the Final Atomic State in the Ionization Continuum: Compton
 Scattering ... 88
 3. Resonant Scattering ... 93

D. Multiphoton Processes: Several Photons Appear or Disappear 98
 1. Spontaneous Emission of Two Photons .. 98
 2. Multiphoton Absorption (and Stimulated Emission) between Two Discrete Atomic States 100
3. Multiphoton Ionization .. 102
4. Harmonic Generation ... 104
5. Multiphoton Processes and Quasi-Resonant Scattering 106

E. Radiative Corrections: Photons Are Emitted and Reabsorbed (or Absorbed and Reemitted) .. 109
2. Stimulated Radiative Corrections .. 114

F. Interaction by Photon Exchange .. 118
1. Exchange of Transverse Photons between Two Charged Particles: First Correction to the Coulomb Interaction 118
2. Van der Waals Interaction between Two Neutral Atoms—
a. Small Distance: $D \ll \lambda_{ab}$. b. Large Distance $\lambda_{ab} \ll D$ 121

COMPLEMENT A_H—PHOTODETECTION SIGNALS AND CORRELATION FUNCTIONS

Introduction ... 127

5. Double Photodetection Signals—a. Correlation between Two Photodetector Signals. b. Sketch of the Calculation of w_H 143
COMPLEMENT B_{II}—RADIATIVE CORRECTIONS IN THE PAULI–FIERZ REPRESENTATION

Introduction ... 147

III
NONPERTURBATIVE CALCULATION OF TRANSITION AMPLITUDES

Introduction .. 165

A. Evolution Operator and Resolvent ... 167
1. Integral Equation Satisfied by the Evolution Operator .. 167
2. Green’s Functions—Propagators ... 167
3. Resolvent of the Hamiltonian .. 170

B. Formal Resummation of the Perturbation Series .. 172
1. Diagrammatic Method Explained on a Simple Model ... 172
2. Algebraic Method Using Projection Operators—a. Projector onto a Subspace ν_0 of the Space of States. b. Calculation of the Projection of the Resolvent in the Subspace ν_0. c. Calculation of Other Projections of $G(z)$. d. Interpretation of the Level-Shift Operator ... 174

C. Study of a Few Examples ... 183
1. Evolution of an Excited Atomic State—a. Nonperturbative Calculation of the Probability Amplitude That the Atom Re-
Contents

mains Excited. b. Radiative Lifetime and Radiative Level Shift. c. Conditions of Validity for the Treatment of the Two Preceding Subsections ... 183

COMPLEMENT A III—ANALYTIC PROPERTIES OF THE RESOLVENT

Introduction ... 213

1. Analyticity of the Resolvent outside the Real Axis 213
2. Singularities on the Real Axis 215
3. Unstable States and Poles of the Analytic Continuation of the Resolvent ... 217
4. Contour Integral and Corrections to the Exponential Decay 220

COMPLEMENT B III—NONPERTURBATIVE EXPRESSIONS FOR THE SCATTERING AMPLITUDES OF A PHOTON BY AN ATOM

Introduction ... 222

2. Introducing Exact Asymptotic States—\(a. \) The Atom in the Absence of Free Photons. \(b. \) The Atom in the Presence of a Free Photon 229

3. Transition Amplitude between Exact Asymptotic States—
\(a. \) New Definition of the S-Matrix. \(b. \) New Expression for the Transition Matrix. Physical Discussion 233

Complement C\(_{III} \)—Discrete State Coupled to a Finite-Width Continuum: From the Weisskopf–Wigner Exponential Decay to the Rabi Oscillation

1. Introduction—Overview .. 239

2. Description of the Model—
\(a. \) Unperturbed States. \(b. \) Assumptions concerning the Coupling. \(c. \) Calculation of the Resolvent and of the Propagators. \(d. \) Fourier Transform of the Amplitude \(U(T) \) .. 240

3. The Important Physical Parameters—
\(a. \) The Function \(\Gamma(E) \). \(b. \) The Parameter \(\Omega \), Characterizing the Coupling of the Discrete State with the Whole Continuum. \(c. \) The Function \(\Delta(E) \) .. 244

4. Graphical Discussion—
\(a. \) Construction of the Curve \(\%_b(E) \). \(b. \) Graphical Determination of the Maxima of \(\%_b(E) \). Classification of the Various Regimes .. 246

5. Weak Coupling Limit—
\(a. \) Weisskopf–Wigner Exponential Decay. \(b. \) Corrections to the Exponential Decay .. 249

6. Intermediate Coupling, Critical Coupling—
\(a. \) Power Expansion of \(\%_b(E) \) near a Maximum. \(b. \) Physical Meaning of the Critical Coupling .. 251

7. Strong Coupling .. 253

IV
Radiation Considered as a Reservoir: Master Equation for the Particles

A. Introduction—Overview .. 257

B. Derivation of the Master Equation for a Small System Interacting with a Reservoir .. 262

1. Equation Describing the Evolution of the Small System in the Interaction Representation .. 262

COMPLEMENT B IV—MASTER EQUATION FOR A DAMPED HARMONIC OSCILLATOR

1. The Physical System .. 322
2. Operator Form of the Master Equation 323

COMPLEMENT C IV—QUANTUM LANGEVIN EQUATIONS FOR A SIMPLE PHYSICAL SYSTEM

Introduction ... 334

2. Heisenberg–Langevin Equations for a Damped Harmonic Oscillator— a. Coupled Heisenberg Equations. b. The Quantum Langevin Equation and Quantum Langevin Forces. c. Connection between Fluctuations and Dissipation. d. Mixed Two-Time Averages Involving Langevin Forces and Operators of \mathbb{A}. e. Rate of Variation of the Variances Σ_N and Σ_A. f. Generalization of Einstein’s Relation. g. Calculation of Two-Time Averages for Operators of \mathbb{A}. Quantum Regression Theorem 340
OPTICAL BLOCH EQUATIONS

Introduction .. 353

A. Optical Bloch Equations for a Two-Level Atom 355
 1. Description of the Incident Field 355
 2. Approximation of Independent Rates of Variation 356
 3. Rotating-Wave Approximation—a. Elimination of Antireso-
 nant Terms. b. Time-Independent Form of the Optical Bloch
 Equations. c. Other Forms of the Optical Bloch Equations .. 357
 4. Geometric Representation in Terms of a Fictitious Spin $\frac{1}{2}$ 361

B. Physical Discussion—Differences with Other Evolution Equa-
 tions .. 364
 1. Differences with Relaxation Equations. Couplings between
 Populations and Coherences 364
 2. Differences with Hamiltonian Evolution Equations 364
 3. Differences with Heisenberg–Langevin Equations 365

C. First Application—Evolution of Atomic Average Values 367
 1. Internal Degrees of Freedom—a. Transient Regime.
 b. Steady-State Regime. c. Energy Balance. Mean Number of
 Incident Photons Absorbed per Unit Time 367
 2. External Degrees of Freedom. Mean Radiative Forces—
 a. Equation of Motion of the Center of the Atomic Wave
 Packet. b. The Two Types of Forces for an Atom Initially at
 Force. Dipole Force .. 370

D. Properties of the Light Emitted by the Atom 379
 1. Photodetection Signals. One- and Two-Time Averages of
 the Emitting Dipole Moment—a. Connection between the
 Radiated Field and the Emitting Dipole Moment. b. Expres-
 sion of Photodetection Signals 379
 2. Total Intensity of the Emitted Light—a. Proportionality to
 the Population of the Atomic Excited State. b. Coherent
 Scattering and Incoherent Scattering. c. Respective Contribu-
 tions of Coherent and Incoherent Scattering to the Total
 Intensity Emitted in Steady State 382
 3. Spectral Distribution of the Emitted Light in Steady

Contents

State—

COMPLEMENT AV—BLOCH–LANGEVIN EQUATIONS AND QUANTUM REGRESSION THEOREM

Introduction

1. Coupled Heisenberg Equations for the Atom and the Field—

2. Derivation of the Heisenberg–Langevin Equations—

3. Properties of Langevin Forces—

VI

THE DRESSED ATOM APPROACH

A. Introduction: The Dressed Atom

1. Model of the Laser Beam

2. Uncoupled States of the Atom + Laser Photons System

3. Atom-Laser Photons Coupling—
b. Energy Diagram versus $\hbar \omega_L$.. 415
5. Physical Effects Associated with Absorption and Induced
Emission ... 417

C. Resonance Fluorescence Interpreted as a Radiative Cascade of
the Dressed Atom .. 419
1. The Relevant Time Scales ... 419
2. Radiative Cascade in the Uncoupled Basis—a. Time Evolu-
tion of the System. b. Photon Antibunching. c. Time Inter-
vals between Two Successive Spontaneous Emissions 420
Transitions between Dressed States. b. Fluorescence Triplet.
c. Time Correlations between Frequency Filtered Fluorescence
Photons .. 423

D. Master Equation for the Dressed Atom 427
1. General Form of the Master Equation—a. Approximation of
Independent Rates of Variation. b. Comparison with Optical
Bloch Equations .. 427
2. Master Equation in the Dressed State Basis in the Secular
Limit—a. Advantages of the Coupled Basis in the Secular
Limit. b. Evolution of Populations. c. Evolution of Coher-
ences—Transfer of Coherences. d. Reduced Populations and
Reduced Coherences .. 429
3. Quasi-Steady State for the Radiative Cascade—a. Initial Den-
sity Matrix. b. Transient Regime and Quasi-Steady State 435

E. Discussion of a Few Applications 437
1. Widths and Weights of the Various Components of the
Fluorescence Triplet—a. Evolution of the Mean Dipole Mo-
ment. b. Widths and Weights of the Sidebands. c. Structure
of the Central Line .. 437
2. Absorption Spectrum of a Weak Probe Beam—a. Physical
Problem. b. Case Where the Two Lasers Are Coupled to the
Same Transition. c. Probing on a Transition to a Third
Level. The Autler–Townes Effect 442
3. Photon Correlations—a. Calculation of the Photon-Correla-
tion Signal. b. Physical Discussion. c. Generalization to a
Three-Level System: Intermittent Fluorescence 446
3. Collision-Induced Modifications of the Emission and Absorption of Light by the Atom. Collisional Redistribution—a. Taking into Account Spontaneous Emission. b. Reduced Steady-State Populations. c. Intensity of the Three Components of the Fluorescence Triplet. d. Physical Discussion in the Limit $\Omega_1 \ll |\delta_1| \ll \tau_{\text{coll}}^{-1}$... 501

4. Sketch of the Calculation of the Collisional Transfer Rate—
a. Expression of the Transfer Rate as a Function of the Collision S-Matrix. b. Case Where the Laser Frequency Becomes Resonant during the Collision. Limit of Large Detunings 510

EXERCISES

1. Calculation of the Radiative Lifetime of an Excited Atomic Level. Comparison with the Damping Time of a Classical Dipole Moment ... 515
2. Spontaneous Emission of Photons by a Trapped Ion. Lamb–Dicke Effect ... 518
3. Rayleigh Scattering ... 524
4. Thomson Scattering ... 527
5. Resonant Scattering ... 530
6. Optical Detection of a Level Crossing between Two Excited Atomic States ... 533
7. Radiative Shift of an Atomic Level. Bethe Formula for the Lamb Shift ... 537
8. Bremsstrahlung. Radiative Corrections to Elastic Scattering by a Potential ... 548
9. Low-Frequency Bremsstrahlung. Nonperturbative Treatment of the Infrared Catastrophe ... 557
10. Modification of the Cyclotron Frequency of a Particle due to Its Interactions with the Radiation Field ... 564
11. Magnetic Interactions between Spins ... 571
12. Modification of an Atomic Magnetic Moment due to Its Coupling with Magnetic Field Vacuum Fluctuations ... 576
13. Excitation of an Atom by a Wave Packet: Broadband Excitation and Narrow-Band Excitation ... 580
14. Spontaneous Emission by a System of Two Neighboring Atoms. Superradiant and Subradiant States ... 585
15. Radiative Cascade of a Harmonic Oscillator ... 589
17. Equivalence between a Quantum Field in a Coherent State and an External Field ... 597
18. Adiabatic Elimination of Coherences and Transformation of Optical Bloch Equations into Relaxation Equations 601

APPENDIX
QUANTUM ELECTRODYNAMICS IN THE COULOMB GAUGE—SUMMARY OF THE ESSENTIAL RESULTS

1. Description of the Electromagnetic Field—\(\text{a. Electric Field } E \) and Magnetic Field \(B \). \(b. \) Vector Potential \(A \) and Scalar Potential \(U \). \(c. \) Coulomb Gauge. \(d. \) Normal Variables. \(e. \) Principle of Canonical Quantization in the Coulomb Gauge. \(f. \) Quantum Fields in the Coulomb Gauge ... 621
2. Particles .. 628
3. Hamiltonian and Dynamics in the Coulomb Gauge—\(a. \) Hamiltonian. \(b. \) Unperturbed Hamiltonian and Interaction Hamiltonian. \(c. \) Equations of Motion ... 629
4. State Space .. 633
5. The Long-Wavelength Approximation and the Electric Dipole Representation—\(a. \) The Unitary Transformation. \(b. \) The Physical Variables in the Electric Dipole Representation. \(c. \) The Displacement Field. \(d. \) Electric Dipole Hamiltonian ... 635

References .. 641

Index ... 645