CHAPTER 1
DEVELOPING THREE-DIMENSIONAL MODELS OF ION CHANNEL PROTEINS
H. ROBERT GUY and STEWART R. DURELL

1. Introduction ... 1
2. Physical Factors Influencing Membrane Protein Structure and Modeling ... 3
3. Modeling Ion Channel Protein Structures 5
 3.1. Overview .. 5
 3.2. Phase I: Transmembrane Topology, Functional Mechanisms, and Ligand Binding Sites 6
 3.3. Phase II: General Position and Orientation of Transmembrane Segments .. 8
 3.4. Phase III: Approximation of Atomic Positions 12
4. Channels Formed by Small α-Helical Proteins 13
 4.1. General Concepts .. 13
 4.2. 8-Lysin ... 15
 4.3. Magainin ... 15
 4.4. Cecropin and Sarcotoxin 16
 4.5. Pardaxin ... 18
 4.6. Amyloid β-Protein .. 20
5. Water-Soluble Proteins that Form Ion Channels 20
6. Phase I Models of Voltage-Gated Channels 21
 6.1. Models and Rationale 21
 6.2. Experimental Verification of Models 23
7. Potassium Channels .. 25
 7.1. Phase III Models of Ion-Selective P Segments 25
 7.2. Segments Surrounding K+ Channel P Segments 30
8. Models of Na+ and Ca2+ Channel P Segments 32
CHAPTER 2

STRUCTURAL AND FUNCTIONAL DIVERSITY OF VOLTAGE-ACTIVATED CALCIUM CHANNELS

MICHEL DE WAARD, CHRISTINA A. GURNETT, and KEVIN P. CAMPBELL

1. Introduction .. 41
 1.1. Voltage-Dependent Ca\(^{2+}\) Channels as Pathways for Intracellular Ca\(^{2+}\) Elevation 41
 1.2. Biophysical Diversity of Voltage-Dependent Ca\(^{2+}\) Channels 42
 1.3. Pharmacological Diversity of Voltage-Dependent Ca\(^{2+}\) Channels 44
 1.4. Correlation between Ca\(^{2+}\) Channel Type and Function in Excitable and Nonexcitable Cells 47
2. Subunit Structure of Voltage-Dependent Ca\(^{2+}\) Channels 48
 2.1. Purification of the Skeletal Muscle L-Type Ca\(^{2+}\) Channel 48
 2.2. Purification of the N-Type Ca\(^{2+}\) Channel Complex 50
 2.3. Characterization of Other Voltage-Dependent Ca\(^{2+}\) Channels 51
3. Molecular Diversity of Voltage-Dependent Ca\(^{2+}\) Channels 52
 3.1. Cloning of Ca\(^{2+}\) Channel Subunits 52
 3.2. Subunit Identification of Native L- and N-Type Ca\(^{2+}\) Channels 57
 3.3. Membrane Topology of Voltage-Dependent Ca\(^{2+}\) Channel Subunits 57
4. Functional Reconstitution of Purified Voltage-Dependent Ca\(^{2+}\) Channels 59
 4.1. Functional Properties of Purified Ca\(^{2+}\) Channels in Bilayers 59
 4.2. Similarities between Purified L- and N-Type Ca\(^{2+}\) Channels 62
5. Expression of Ca\(^{2+}\) Channels 63
 5.1. Functional Classification of Cloned \(\alpha_1\) Subunits 63
 5.2. Role of Ancillary Subunits 67
6. Subunit Interaction Sites in Voltage-Dependent Ca\(^{2+}\) Channels 70
 6.1. Identification of an Alpha 1 Interaction Domain (AID) that Binds \(\beta\) Subunits 70
 6.2. Identification of a Beta Interaction Domain (BID) that Interacts with AID 71
 6.3. Perspectives on the Primary Subunit Interaction Sites 75
7. Summary and Conclusions 75
 7.1. Secondary Subunit Interaction Sites 76
 7.2. Interactions of Ca\(^{2+}\) Channels with Other Cellular Proteins 76
 7.3. Functional Map of Ca\(^{2+}\) Channels 78
8. References .. 79
CHAPTER 3
THE GABA A RECEPTORS: FROM SUBUNITS TO DIVERSE FUNCTIONS
H. MOHLER, J. M. FRITSCHY, B. LÜSCHER, U. RUDOLPH, J. BENSON, and D. BENKE

1. Introduction ... 89
2. Subunit Structure and Stoichiometry 90
3. Functional Domains of Subunits .. 90
 3.1. GABA Site .. 90
 3.2. Benzodiazepine Site ... 91
 3.3. Loreclezole Site .. 92
 3.4. Barbiturate Site .. 92
 3.5. Steroid Site .. 92
 3.6. PicROTOXIN Site .. 93
 3.7. Novel Drug Binding Sites 93
 3.8. Phosphorylation Sites .. 93
4. Receptor Diversity in Vivo by Heterooligomerization 94
 4.1. GABA A Receptors Containing the α1β2γ2 Subunits 94
 4.2. GABA A Receptors Containing α2β3γ2 Subunits or α3β3γ2 Subunits ... 96
 4.3. GABA A Receptors Containing the α5 Subunit 97
 4.4. GABA A Receptors Containing the α4 or α6 Subunits 98
 4.5. GABA A Receptors Containing the δ Subunit 98
 4.6. GABA A Receptors with Unusual Subunit Combinations 99
 4.7. GABA Receptors Containing the ρ1 or ρ2 Subunits 99
5. Drug Responses of GABA A Receptor Subtypes 100
6. Regulation of Receptor Expression 101
7. Analysis of Gene Promoters .. 102
8. Animals with Mutations in GABA A Receptor Subunits 102
9. GABA A Receptors in Disease .. 103
 9.1. Epilepsy .. 103
 9.2. Huntington’s Disease ... 104
 9.3. Angelman’s Syndrome .. 105
10. Outlook .. 105
11. References .. 106

CHAPTER 4
STRUCTURE AND REGULATION OF THE AMILORIDE-SENSITIVE EPITHELIAL SODIUM CHANNEL
PASCAL BARBRY and MICHEL LAZDUNSKI
1. Introduction ... 115
2. Pharmacology .. 116
3.2. Conservation of Primary and Secondary Structure 178
3.3. Site-Directed Mutagenesis of Charged Residues in Yeast VDAC 179
4.1. Magnitude of the Structural Change Associated with Voltage Gating 180
4.2. Location of the Mobile Domain 183
4.3. Identification and Localization of the Voltage Sensor 184
4.4. Activation Energy and the Gating Mechanism 187
4.5. Ion Flow and the Gating Process 189
5. Comparison of Proposed Gating Mechanisms 190
5.1. Corking the Bottle 190
5.2. Forming a Jelly Roll 191
5.3. Tilting the Strands 191
5.4. Deforming the Cylinder 192
6. Regulation 192
6.1. Amplification of the Voltage Dependence 192
6.2. Action of the VDAC Modulator 193
6.3. Action of Nucleotides 195
6.4. Colloidal Osmotic Pressure 195
6.5. Inhibition by Metal Hydroxides 196
7. Auto-Directed Insertion 196
8. Role of VDAC in Cell Function 197
9. Conclusions 198
10. References 199

CHAPTER 6
ION CHANNELS AND MEMBRANE RECEPTORS IN FOLLICLE-ENCLOSED XENOPUS OOCYTES
ROGELIO O. ARELLANO, RICHARD M. WOODWARD, and RICARDO MILEDI
1. Introduction 203
2. The Follicle-Enclosed Xenopus Oocyte 204
2.1. Morphology 204
2.2. Electrophysiological Methods 206
2.3. Defolliculation Methods 208
3. Follicle Ion Currents: An Overview 209
3.1. Oocyte-Based Ca\(^{2+}\)-Dependent Cl\(^{-}\) Currents 209
3.2. Follicular Cell–Based Muscarinic Responses (ACh-K\(^{+}\), \(I_{in}\), \(S_{in}\), and \(S_{out}\) Currents) 210
3.3. Follicular Cell–Based Responses Mediated by cAMP (cAMP-K\(^{+}\), \(S_{in}\), and \(S_{out}\) Currents) 212
3.4. Follicular Cell–Based Currents Elicited by Changes in Osmolarity 213
4. Follicular Cell K\(^{+}\) Currents 215
CONTENTS

4.1. cAMP-K⁺ Currents .. 215
4.2. K⁺ Currents Activated by ACh, ATP, or All 225
4.3. Modulation of cAMP-K⁺ Current by Muscarinic and Purinergic Receptors .. 226

5. Follicular Cell Cl⁻ Currents 229
5.1. Osmodependent Sᵢn Currents 230
5.2. Sᵢn and Fᵢn Currents Are Not Ca²⁺-Dependent 231
5.3. Cellular Localization of Sᵢn and Fᵢn Channels 232
5.4. Intrinsic Differences between Sᵢn and Fᵢn Currents 235
5.5. Membrane Receptors Involved in Cl⁻ Current Generation 236
5.6. Receptor-Channel Coupling Mechanisms 238

6. Follicular Cell Ion Currents Elicited by Changes in Osmolarity 244
6.1. Localization of the Elements Involved in I_Cl(osm) Generation 245
6.2. Relationship between I_Cl(osm) and Sᵢn Currents 250

7. Potential Physiological Roles 250
7.1. Regulation of Oocyte Maturation 251
7.2. Regulation of Follicle Volume 251

8. Conclusions .. 252
9. References .. 253

CHAPTER 7
CALCIUM-ACTIVATED POTASSIUM CHANNELS IN ADRENAL CHROMAFFIN CELLS
CHRISTOPHER J. LINGLE, CHRISTOPHER R. SOLARO, MURALI PRAKRIYA, and JIU PING DING

1. Introduction .. 261
1.1. General Physiology and Pharmacology of BK Channels ... 262
1.2. Molecular Biology of Ca²⁺- and Voltage-Dependent K⁺ Channels .. 263
1.3. Diversity of BK Channels 264
1.4. Properties of BK Channels that Are Important for Defining Potential Physiological Roles 265
1.5. Physiology and Pharmacology of SK Channels 266

2. Calcium-Dependent K⁺ Current in Chromaffin Cells 267
2.1. Rat Chromaffin Cells Express both BK and SK Ca²⁺-Dependent Currents .. 267
2.2. Rat Chromaffin Cells Express Two Variants of BK Channel 271
2.3. Properties of Macroscopic Inactivating BK Current Reflect Underlying Single-Channel Characteristics 274

3. Inactivation of BKᵢ Channels: Does a “Ball and Chain” Model Apply? 275
3.1. Inactivation of BKᵢ Channels Is Rapid and Exhibits Apparent Ca²⁺ and Voltage Dependence 279
3.2. Inactivation of BKᵢ Channels Is Trypsin-Sensitive 280
3.3. ShakerB Ball Peptides (BP) Block BK Channels 280
CHAPTER 8
REGULATION OF CALCIUM RELEASE CHANNEL IN SARCOPLASMIC RETICULUM
MICHIKI KASAI and TORU IDE

1. Introduction ... 303
2. Permeability of Ca2+ Channel .. 304
 2.1. Choline and Monovalent Cation Permeation .. 304
 2.2. Ca2+ and Divalent Cation Permeation .. 306
 2.3. Complementarity between Single-Channel and Flux Measurements 307
3. Requirement of Potassium Chloride for Neutral Molecule Permeation 307
 3.1. Glucose Permeation ... 307
 3.2. Ca2+ Permeation .. 309
 3.3. Choline Permeation ... 310
 3.4. Permeation of Other Molecules .. 311
 3.5. Model of Conformational Change in the Ca2+ Channel 312
4. Effects of Potassium Chloride on Regulation of Calcium Channel 313
 4.1. Activation and Inhibition Sites of Ca2+ Channel 313
 4.2. Effects of KCl on Activation and Inhibition Sites for Ca2+ 313
 4.3. Effects of KCl on Inhibition Sites for Ruthenium Red and Mg2+ 314
5. Effect of Ryanodine ... 315
 5.1. Effect of Ryanodine on Pore Size ... 315
 5.2. Effect of Inhibitors on Ryanodine-Treated Channel 320
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Regulation of Ca$^{2+}$ Channel by Endogenous Regulators</td>
<td>322</td>
</tr>
<tr>
<td>6.1</td>
<td>Loss of Ca$^{2+}$ Response Accompanied by Calsequestrin</td>
<td>322</td>
</tr>
<tr>
<td>6.2</td>
<td>Proteins Bound to Calsequestrin and Ryanodine Receptor</td>
<td>326</td>
</tr>
<tr>
<td>7</td>
<td>Summary</td>
<td>327</td>
</tr>
<tr>
<td>8</td>
<td>Appendix</td>
<td>328</td>
</tr>
<tr>
<td>8.1</td>
<td>Channel Open Process Is Rate-Limiting for the Slow Component in the Flux Measurement of Membrane Vesicles</td>
<td>328</td>
</tr>
<tr>
<td>9</td>
<td>References</td>
<td>329</td>
</tr>
</tbody>
</table>

Chapter 9

SINGLE-CHANNEL STUDIES IN MOLLUSCAN NEURONS

MICHAEL FEJTL and DAVID O. CARPENTER

1. Introduction .. 333
2. Voltage-Activated Currents ... 334
 2.1. The Sodium Channel .. 334
 2.2. The Potassium Channels ... 339
 2.3. The Calcium Channel ... 355
 2.4. The Chloride Channel ... 361
 2.5. The Proton Current .. 362
3. Ligand-Activated Currents .. 362
 3.1. The Serotonin (5-HT)-Activated K$^+$ Channel 362
 3.2. The Cholinergic Current ... 366
4. Mechanosensitive (Stretch-Sensitive) Ion Channels 366
5. The Effects of Lead and Mercuric Ions 369
6. References .. 370

Chapter 10

NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS

JON LINDSTROM

1. Introduction .. 377
2. Muscle Nicotinic Receptors ... 378
 2.1. Introduction .. 378
 2.2. Function ... 380
 2.3. Three-Dimensional Structure 383
 2.4. Amino Acid Sequences of Muscle and Neuronal AChRs 385
 2.5. Development of Muscle AChRs 402
3. Neuronal AChRs that Do Not Bind α-Bungarotoxin 403
 3.1. Initial History of Molecular Studies 403
 3.2. Subunit Composition and Stoichiometry of AChR Subtypes 406
 3.3. Summary of Properties of Some mAbs Useful in Studies of AChRs | 408
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4. Pathological Significance</td>
<td>408</td>
</tr>
<tr>
<td>3.5. Upregulation of $\alpha_4\beta_2$ AChRs by Chronic Exposure to Nicotine</td>
<td>409</td>
</tr>
<tr>
<td>3.6. Epibatidine, a Potent Agonist for Neuronal AChRs</td>
<td>420</td>
</tr>
<tr>
<td>3.7. Electrophysiological Properties</td>
<td>424</td>
</tr>
<tr>
<td>3.8. Functional Roles</td>
<td>425</td>
</tr>
<tr>
<td>4. Neuronal Nicotine Receptors that Bind α-Bungarotoxin</td>
<td>429</td>
</tr>
<tr>
<td>4.1. Initial History of Molecular Studies and Subunit Nomenclature</td>
<td>429</td>
</tr>
<tr>
<td>4.2. Subunit Composition and Stoichiometry of AChR Subtypes</td>
<td>430</td>
</tr>
<tr>
<td>4.3. Pharmacological Properties</td>
<td>430</td>
</tr>
<tr>
<td>4.4. Channel Properties</td>
<td>432</td>
</tr>
<tr>
<td>4.5. Functional Roles</td>
<td>434</td>
</tr>
<tr>
<td>5. References</td>
<td>437</td>
</tr>
</tbody>
</table>

INDEX | 451 |