No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher, Elsevier Science B.V., Copyright & Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A.: This publication has been registered with the Copyright Clearance Center Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the U.S.A.

All other copyright questions, including photocopying outside of the U.S.A., should be referred to the copyright owner, Elsevier Science B.V., unless otherwise specified.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.
CONTENTS

I. QUANTUM INTERFERENCE, SUPERPOSITION STATES OF LIGHT, AND NONCLASSICAL EFFECTS

by V. Bužek (BRATISLAVA, SLOVAKIA), AND P. L. Knight (LONDON, ENGLAND)

§ 1. INTRODUCTION .............................................. 3

§ 2. PHYSICS IN PHASE SPACE ...................................... 7

2.1. Phase-space formalism in classical physics .................. 7

2.2. Phase-space formalism in quantum mechanics ............... 10

2.2.1. Characteristic functions .................................. 11

2.2.2. Quasiprobability distributions ............................ 13

2.3. Pure versus mixture states: Quantum-mechanical entropy ... 14

§ 3. QUANTUM INTERFERENCE IN PHASE SPACE .................... 17

3.1. Semiclassical approximation ................................ 18

3.2. Superpositions of Fock states ............................... 22

§ 4. SUPERPOSITIONS OF COHERENT STATES ....................... 29

4.1. General Formalism ........................................... 29

4.2. Superpositions of two coherent states ..................... 32

4.2.1. Nonclassical properties of the even CS .................. 33

4.2.2. Nonclassical properties of the odd CS ................... 37

4.2.3. Nonclassical properties of the Yurke–Stoler CS .......... 39

4.3. One-dimensional continuous superpositions of coherent states 41

4.4. Phase of superposition states ................................ 42

4.4.1. Phase probability distributions (PPD) ................... 42

4.4.2. PPD for superpositions of coherent states ............... 44

4.4.3. Phase properties of pair coherent states ................. 48

4.5. Coarsening of the phase-space description ................. 52

§ 5. SUPERPOSITION STATES IN RESERVOIRS ...................... 55

5.1. Master equation and its solution ........................... 58

5.2. Dissipation in zero-temperature reservoir .................. 62

5.2.1. Decay of the fourth-order squeezing .................... 67

5.3. Decay of quantum coherences in phase-sensitive reservoirs 70

5.3.1. Phase properties of even CS decaying into squeezed reservoirs 72

5.3.2. RWA and the master equation ............................ 74

5.4. Amplification with phase-sensitive amplifiers .............. 77

5.5. Coarsening and decay ....................................... 80

§ 6. PRODUCTION OF SCHRODINGER CATS .......................... 83

6.1. Schrödinger cats by means of amplitude dispersion ........ 83

6.2. Schrödinger cats in micromasers: Cotangent states ........ 86

6.3. Schrödinger cats by means of quantum-nondemolition scheme based on a "dispersive atomic probe" .............................. 88
III. THE STATISTICS OF DYNAMIC SPECKLES
by T. Okamoto and T. Asakura (Sapporo, Japan)

§ 1. INTRODUCTION ........................................ 185
§ 2. SPATIOTEMPORAL PROPERTIES OF DYNAMIC SPECKLE PATTERNS 186
   2.1. Basic formulation .................................... 186
       2.1.1. Spacetime cross-correlation function of the speckle intensity 186
       2.1.2. Free-space geometry ................................ 189
       2.1.3. Imaging geometry .................................. 190
   2.2. Characteristics of speckle motion .................... 192
       2.2.1. Translation and boiling ............................ 192
       2.2.2. Translation distance and correlation distance .......... 194
       2.2.3. Power spectrum of intensity fluctuations ............ 201
   2.3. Properties of integrated intensity ................... 201
   2.4. Effects of surface roughness ........................ 204
§ 3. THREE-DIMENSIONAL MOTION OF DIFFUSE OBJECTS .......... 205
   3.1. Rotational motion ................................... 206
   3.2. Longitudinal motion .................................. 208
   3.3. Comparison between lateral and longitudinal motions .... 211
§ 4. POLychromatic Light Illumination ....................... 214
   4.1. Nonstationary spatial structure ....................... 214
   4.2. Cross-spectral correlation function ................... 215
   4.3. Temporal fluctuations in polychromatic speckle patterns 219
§ 5. SPEckLED SPECKLES ................................... 225
   5.1. Historical background ............................... 225
   5.2. Illumination with static speckle patterns ............ 227
   5.3. Illumination with dynamic speckle patterns .......... 233
       5.3.1. Fresnel region .................................. 234
       5.3.2. Image region ................................... 239
§ 6. Concluding Remarks .................................... 245
REFERENCES ............................................... 246

IV. SCATTERING OF LIGHT FROM MULTILAYER SYSTEMS WITH ROUGH BOUNDARIES
by I. Ohlidal, K. Navrátil and M. Ohlidal (Brno, Czech Republic)

§ 1. INTRODUCTION ........................................ 251
§ 2. Theory ................................................. 251
   2.1. Physical models of rough boundaries .................. 252
   2.2. Theories of effective medium ........................ 255
   2.3. Perturbation theories ................................ 261
   2.4. Diffraction theories .................................. 270
       2.4.1. Single layer .................................... 272
       2.4.2. Multilayer system ................................ 279
   2.5. X-ray scattering from the rough multilayer .......... 287
   2.6. Discussion of the theoretical approaches ............ 290
§ 3. Experiments ............................................ 291
   3.1. Rough surface ....................................... 291
       3.1.1. Interferometric methods .......................... 291
V. RANDOM WALK AND DIFFUSION-LIKE MODELS OF PHOTON MIGRATION
IN TURBID MEDIA

by A. H. Gandjbakhche and G. H. Weiss (Bethesda, MD, USA)

§ 1. INTRODUCTION .................................................. 335

§ 2. ELEMENTS OF RANDOM WALK AND DIFFUSION THEORY ..................... 337
  2.1. Random walk theory .............................................. 337
  2.2. Passage to the diffusion limit ................................... 345

§ 3. RANDOM WALK ON A SIMPLE CUBIC LATTICE ................................ 347
  3.1. Derivation of measurable results ................................... 347

§ 4. SCALING RELATIONSHIPS ............................................. 354
  4.1. Isotropic scattering ............................................. 354
  4.2. Anisotropic scattering .......................................... 356
  4.3. Boundary conditions ............................................. 359
  4.4. Internal reflection effects ...................................... 361

§ 5. SELECTED APPLICATIONS TO MACROSCOPICALLY HOMOGENEOUS MEDIA ...... 364
  5.1. Laser Doppler flowmetry .......................................... 364
  5.2. Spectroscopic applications ....................................... 369
  5.3. Evaluation of the performance of an optical imaging system ............ 377

§ 6. OPTICAL INFORMATION RELATED TO INTERNAL INHOMOGENEITIES ............. 385
  6.1. The exact enumeration method .................................... 385
  6.2. Strata with differing material properties .......................... 386
  6.3. Photon migration fractal media .................................... 391
  6.4. Detection of hidden bodies by transillumination experiments ............ 394

§ 7. SUMMARY .......................................................... 398

ACKNOWLEDGEMENTS ...................................................... 399

REFERENCES .......................................................... 399

AUTHOR INDEX .......................................................... 403

SUBJECT INDEX .......................................................... 413

CONTENTS OF PREVIOUS VOLUMES ...................................... 417

CUMULATIVE INDEX ...................................................... 425