Molecular Systematics

Second Edition

Edited by

David M. Hillis
THE UNIVERSITY OF TEXAS

Craig Moritz
UNIVERSITY OF QUEENSLAND

and

Barbara K. Mable
THE UNIVERSITY OF TEXAS

Sinauer Associates, Inc. • Publishers
Sunderland, Massachusetts U.S.A.
The Cover
A circular tree of life inferred from ribosomal RNA genes, superimposed on the genome of a triploid parthenogenetic species of gecko (Heteronotia binoei complex). The chromosomes were stained by fluorescent in situ hybridization for the ribosomal DNA arrays in a study of concerted evolution of repeated genes (see Hillis et al., 1991, Science 251:308–310). The photographs represent a sampling of multicellular species from the tips of the tree of life. Photographs by David Hillis. Graphic design by Janet Young.

Molecular Systematics, Second Edition

All rights reserved. This book may not be reproduced for any purpose without permission from the publisher. For information, address Sinauer Associates, 23 Plumtree Road, Sunderland, MA 01375-0407 U.S.A.

FAX: 413-549-1118
Internet: publish@sinauer.com

Library of Congress Cataloging-in-Publication Data
Molecular systematics / edited by David M. Hillis, Craig Moritz, Barbara K. Mable. —2nd ed.
. p. cm.
Includes bibliographical references (p.) and indexes.
QH83.M665 1996
574.8’8–dc20 95-41159
CIP

Printed in Canada
5 4 3
Contents in Brief

1. Molecular Systematics: Context and Controversies 1

Part 1. Sampling
2. Project Design 17
3. Collection and Storage of Tissues 29

Part 2. Molecular Techniques
4. Proteins: Isozyme Electrophoresis 51
5. Chromosomes: Molecular Cytogenetics 121
7. Nucleic Acids II: The Polymerase Chain Reaction 205
8. Nucleic Acids III: Analysis of Fragments and Restriction Sites 249

Part 3. Analysis
10. Intraspecific Differentiation 385
11. Phylogenetic Inference 407
12. Applications of Molecular Systematics: The State of the Field and a Look to the Future 515
Contents

Preface
Preface to the First Edition
Contributors

Chapter 1
Molecular Systematics: Context and Controversies 1
Craig Moritz and David M. Hillis

The Evolution of Molecular Systematics 1
The Link Between Molecular Evolution and Systematics 3
The Link Between Molecular Population Genetics and Phylogenetics 4

Part 1 Sampling

Chapter 2
Project Design 17
Peter R. Baverstock and Craig Moritz

Introduction 17
Statistical Considerations 18

Chapter 3
Collection and Storage of Tissues 29
Herbert C. Dessauer, Charles J. Cole, and Mark S. Hafner

Introduction 29
Regulations Governing Acquisition of Specimens 30
Removing and Preserving Tissues in the Field 30
General Procedures 30
Procedures Unique to Animal Tissue Collection 33
Procedures Unique to Plant Tissue Collection 35
Collecting Cell Lines 35
Transport of Tissues from Field to Laboratory or Between Laboratories 36

CONTROVERSIES IN MOLECULAR SYSTEMATICS 5
Molecules versus Morphology 5
Types of Characters and Methods of Analysis 6
Homology and Similarity in Molecular Systematics 7
Gene Trees and Organismal Phylogeny 9
Constancy of Evolutionary Rates 10
Neutrality of Molecular Variants 11
Data Quality and Presentation 11
Scope and Use of This Book 12
For Further Study 12

MOLECULAR SYSTEMATICS 18
Studies of Population Structure 19
Studies of Species Boundaries and Hybridization 22
Phylogenetic Relationships 25
Concluding Remarks 27

Shipping Regulations 36
Sources of Liquid Nitrogen and Dry Ice 36
Storage of Tissues on Return from the Field 37
Stability of Macromolecules During Long-Term Storage 37
Development and Support of Synoptic Tissue Collections 39
Disposition of Tissues for Long-Term Preservation 40
Curatorial Problems Unique to Tissue Collections 40
Existing Collections 41
Appendix: Synoptic Tissue Collections 42
Chapter 6
Nucleic Acids I: DNA–DNA Hybridization 169
Steven D. Werman, Mark S. Springer, and Roy J. Britten

INTRODUCTION 169

PRINCIPLES AND COMPARISON OF METHODS 170
General Principles 170
Summary of the DNA Hybridization Techniques and Data Analysis 171
Properties of Hybridization Data 172
Factors Affecting DNA Hybridization 172
The Criterion and Precision of Reassociation 173
Comparison of the Primary Methods 174

APPLICATIONS AND LIMITATIONS 176

LABORATORY SETUP 178

Protocols
Protocol 1: DNA Isolation and Purification 179
Protocol 2: Preparing Sheared Drivers From Long Native DNA 180
Protocol 3: Tracer Preparation with 32P or 3H 181
Protocol 4: Tracer Self-Reaction and Repeat Removal 182
Protocol 5: Fractionation of Single-Copy Tracer over Hydroxyapatite 183
Protocol 6: Estimation of Tracer Fragment Length 184
Protocol 7: Preparing Tracers by Iodination and Phosphate Buffer 185
Protocol 8: DNA Hybridization with Hydroxyapatite and Phosphate Buffer 186
Protocol 9: Hydroxyapatite Column Preparation 186
Protocol 10: Phenol Emulsion Reassociation Technique (PERT) 187
Protocol 11: Analysis of Hybrid Thermal Stability Using the S1 Nuclease–TEACL Assay 188

INTERPRETATION AND TROUBLESHOOTING 189
Calculation of Melting Curves from Raw Counts: An Example 189
Problematic Melting Curves 192
Characteristics of Distance Estimates Derived from Raw Melting Curve Data 194
Hybridization Data in Phylogenetic Reconstruction 197

Appendix: Stock Solutions 201

Chapter 7
Nucleic Acids II: The Polymerase Chain Reaction 205
Stephen R. Palumbi

INTRODUCTION 205

PRINCIPLES AND COMPARISON OF METHODS 206
General Principles 206
The Cycle 207
Choosing Reaction Conditions 209
PCR Components 210
The Thermal Cycler 211
Primers and Primer Design 212

ASSUMPTIONS 214

APPLICATIONS AND LIMITATIONS 215
Types of Amplifications and Types of Data 215

LABORATORY SETUP 221

Protocols
Protocol 1: DNA isolation for PCR 222
Protocol 2: The Polymerase Chain Reaction 225
Protocol 3: PCR From RNA 229

TROUBLESHOOTING 230
Avoiding PCR Problems: PCR Hygiene 230
Some Common Problems with PCR 230
Problems with Single-Strand Amplifications 231

USEFUL PRIMERS 232
Nuclear Ribosomal Gene Primers 232
Animal Mitochondrial Gene Primers 235
Chloroplast DNA Primers 239
Intron Primers 240
More Information about PCR 245

Appendix: Stock Solutions 246
Chapter 8
Nucleic Acids III: Analysis of Fragments and Restriction Sites 249
Thomas E. Dowling, Craig Moritz, Jeffrey D. Palmer, and Loren H. Rieseberg

PRINCIPLES AND COMPARISON OF METHODS 249
General Principles 249
Comparison of the Primary Methods 257

APPLICATIONS AND LIMITATIONS 266
Choice of Sequence 266
Population-Level Comparisons 268
Species-Level Comparisons 276
Higher-Level Systematics 279

LABORATORY SETUP 282

Chapter 9
Nucleic Acids IV: Sequencing and Cloning 321
David M. Hillis, Barbara K. Mable, Allan Larson, Scott K. Davis, and Elizabeth A. Zimmer

PRINCIPLES AND COMPARISON OF METHODS 321
Isolating Target Sequences 323
Nucleic Acid Sequencing 326
Assumptions 330
Comparison of the Primary Techniques 332

APPLICATIONS AND LIMITATIONS 335
Evolution of Genes 335
Intraspecific Diversity 336
Interspecific Diversity 337

SUMMARY 339
LABORATORY SETUP 339

Protocols
Protocol 1: DNA Isolation from Animals, Protists, and Prokaryotes 342
Protocol 2: DNA Isolation from Plants, Fungi, and Algae 343
Protocol 3: Isolation of DNA from Minute Quantities of Tissue 344
Protocol 4: Isolation of RNA from Animals 345
Protocol 5: Isolation of RNA from Plants 346
Protocol 6: Preparation of Partial Gene Libraries in \lambda Bacteriophage Vectors 347

Protocol 7: Growing Bacteriophage 347
Protocol 8: Screening Bacteriophage Libraries 348
Protocol 9: Miniprep Isolation of \lambda DNA 349
Protocol 10: Subcloning into Plasmids or M13 351
Protocol 11: Preparation of Frozen Competent Cells for Transformation 351
Protocol 12: Transformation of E. coli with Plasmid DNA 352
Protocol 13: Transformation of M13 Bacteriophage DNA 352
Protocol 14: Isolation of Plasmid DNA 353
Protocol 15: Miniprep Isolation of M13 DNA 354
Protocol 16: Preparing Permanent Frozen Stocks of Plasmid Clones 354
Protocol 17: Isolation of PCR Products for Sequencing 355
Protocol 18: Cloning Methods for PCR Products 356
Protocol 19: Purification of PCR Products for Sequencing 359
Protocol 20: Screening Methods for Detecting Variation in DNA Sequences 361
Protocol 21: Preparing a Sequencing Gel 362
Protocol 22: DNA Sequencing Reactions 363
Protocol 23: RNA Sequencing Reactions 366
Protocol 24: Thermal Cycle Sequencing 367
Protocol 25: Running a Sequencing Gel 368
Protocol 26: Microsatellites 370

INTERPRETATION AND TROUBLESHOOTING 371
Autoradiograph Interpretation 371
Sequence Comparison and Alignment 374

Appendix: Stock Solutions 378
Part 3: Analysis

Chapter 10

Intraspecific Differentiation 385
Bruce S. Weir

APPLICATIONS 401
Conditional Genotypic Frequencies 401

IMPLEMENTATION 402
Sampling 402
Analysis 403

AN EXAMPLE 403

CONCLUSION 405

Chapter 11

Phylogenetic Inference 407
David L. Swofford, Gary J. Olsen, Peter J. Waddell, and David M. Hillis

OPTIMALITY CRITERIA II: METHODS BASED ON MODELS 415
OF EVOLUTIONARY CHANGE 426
The Utility of Models 426
Maximum Likelihood Methods 430
Pairwise Distance Methods 446
Model-Based Corrections for Character Data: Hadamard Conjugation 464
Lake’s Method of Invariants 474
Rooting Revisited 477

SEARCHING FOR OPTIMAL TREES 478
Exact Algorithms 478
Heuristic Approaches 482
Algorithmic and Other Methods 486

RELIABILITY OF INFERRED TREES 493
Systematic versus Random Error 493
Systematic Error 494
Random Error 503

Appendix: Programs and Software 510

Chapter 12

Applications of Molecular Systematics 515
David M. Hillis, Barbara K. Mable, and Craig Moritz

APPLICATIONS OF PHYLOGENIES FOR ANALYZING MACROEVOLUTIONARY PATTERNS: COMPARATIVE METHODS 540
THE FUTURE OF MOLECULAR SYSTEMATICS 543

Acknowledgments 545

Measurement Symbols 548

Glossary and Abbreviations 549

Literature Cited 560

Index 636