Excited States and Photochemistry of Organic Molecules

Martin Klessinger
Westfälische Wilhelms-Universität Münster

Josef Michl
University of Colorado

VCH
Contents

Notation xix

1. Spectroscopy in the Visible and UV Regions 1
 1.1 Introduction and Theoretical Background 1
 1.1.1 Electromagnetic Radiation 1
 1.1.2 Light Absorption 5
 1.2 MO Models of Electronic Excitation 9
 1.2.1 Energy Levels and Molecular Spectra 9
 1.2.2 MO Models for the Description of Light Absorption 11
 1.2.3 One-Electron MO Models 13
 1.2.4 Electronic Configurations and States 16
 1.2.5 Notation Schemes for Electronic Transitions 20
 1.3 Intensity and Band Shape 21
 1.3.1 Intensity of Electronic Transitions 21
 1.3.2 Selection Rules 27
 1.3.3 The Franck-Condon Principle 34
 1.3.4 Vibronically Induced Transitions 36
 1.3.5 Polarization of Electronic Transitions 38
 1.3.6 Two-Photon Absorption Spectroscopy 40
 1.4 Properties of Molecules in Excited States 44
 1.4.1 Excited-State Geometries 44
 1.4.2 Dipole Moments of Excited-State Molecules 47
 1.4.3 Acidity and Basicity of Molecules in Excited States 48
1.5 Quantum Chemical Calculations of Electronic Excitation 52
 1.5.1 Semiempirical Calculations of Excitation Energies 53
 1.5.2 Computation of Transition Moments 56
 1.5.3 Ab Initio Calculations of Electronic Absorption Spectra 58

Supplemental Reading 60

2. Absorption Spectra of Organic Molecules 63

2.1 Linear Conjugated \(\pi \) Systems 63
 2.1.1 Ethylene 64
 2.1.2 Polyenes 65

2.2 Cyclic Conjugated \(\pi \) Systems 71
 2.2.1 The Spectra of Aromatic Hydrocarbons 71
 2.2.2 The Perimeter Model 76
 2.2.3 The Generalization of the Perimeter Model for Systems with \(4N + 2 \pi \) Electrons 81
 2.2.4 Systems with Charged Perimeters 85
 2.2.5 Applications of the PMO Method Within the Extended Perimeter Model 87
 2.2.6 Polycenes 92
 2.2.7 Systems with a \(4N \pi \)-Electron Perimeter 96

2.3 Radicals and Radical Ions of Alternant Hydrocarbons 101

2.4 Substituent Effects 104
 2.4.1 Inductive Substituents and Heteroatoms 104
 2.4.2 Mesomeric Substituents 109

2.5 Molecules with \(n \rightarrow \pi^* \) Transitions 118
 2.5.1 Carbonyl Compounds 119
 2.5.2 Nitrogen Heterocycles 122

2.6 Systems with CT Transitions 123

2.7 Steric Effects and Solvent Effects 126
 2.7.1 Steric Effects 126
 2.7.2 Solvent Effects 129

Supplemental Reading 135

3. Optical Activity 139

3.1 Fundamentals 139
 3.1.1 Circularly and Elliptically Polarized Light 139
 3.1.2 Chiroptical Measurements 141

3.2 Natural Circular Dichroism (CD) 143
 3.2.1 General Introduction 143
 3.2.2 Theory 145
 3.2.3 CD Spectra of Single Chromophore Systems 147
 3.2.4 Two-Chromophore Systems 152
3.3 Magnetic Circular Dichroism (MCD)

- 3.3.1 General Introduction 154
- 3.3.2 Theory 160
- 3.3.3 Cyclic \(\pi \) Systems with a \((4N + 2)\)-Electron Perimeter 164
- 3.3.4 Cyclic \(\pi \) Systems with a \(4N\)-Electron Perimeter 167
- 3.3.5 The Mirror-Image Theorem for Alternant \(\pi \) Systems 170
- 3.3.6 Applications 171

Supplemental Reading
177

4. Potential Energy Surfaces: Barriers, Minima, and Funnels 179

- 4.1 Potential Energy Surfaces 179
 - 4.1.1 Potential Energy Surfaces for Ground and Excited States 179
 - 4.1.2 Funnels: True and Weakly Avoided Conical Intersections 182
 - 4.1.3 Spectroscopic and Reactive Minima in Excited-State Surfaces 186
- 4.2 Correlation Diagrams 193
 - 4.2.1 Orbital Symmetry Conservation 193
 - 4.2.2 Intended and Natural Orbital Correlations 197
 - 4.2.3 State Correlation Diagrams 200
- 4.3 Biradicals and Biradicaloids 205
 - 4.3.1 A Simple Model for the Description of Biradicals 205
 - 4.3.2 Perfect Biradicals 208
 - 4.3.3 Biradicaloids 210
 - 4.3.4 Intersystem Crossing in Biradicals and Biradicaloids 219
- 4.4 Pericyclic Funnels (Minima) 229
 - 4.4.1 The Potential Energy Surfaces of Photochemical \([2, + 2,] and x[2, + 2,]\) Processes 230
 - 4.4.2 Spectroscopic Nature of the States Involved in Pericyclic Reactions 238

Supplemental Reading
239

5. Photophysical Processes 243

- 5.1 Unimolecular Deactivation Processes 243
 - 5.1.1 The Jablonski Diagram 243
 - 5.1.2 The Rate of Unimolecular Processes 245
 - 5.1.3 Quantum Yield and Efficiency 247
 - 5.1.4 Kinetics of Unimolecular Photophysical Processes 250
 - 5.1.5 State Diagrams 251
5.2 Radiationless Deactivation 252
 5.2.1 Internal Conversion 252
 5.2.2 Intersystem Crossing 254
 5.2.3 Theory of Radiationless Transitions 257
5.3 Emission 260
 5.3.1 Fluorescence of Organic Molecules 260
 5.3.2 Phosphorescence 266
 5.3.3 Luminescence Polarization 272
5.4 Bimolecular Deactivation Processes 276
 5.4.1 Quenching of Excited States 277
 5.4.2 Excimers 278
 5.4.3 Exciplexes 281
 5.4.4 Electron-Transfer and Heavy-Atom Quenching 283
 5.4.5 Electronic Energy Transfer 287
 5.4.6 Kinetics of Bimolecular Photophysical Processes 297
5.5 Environmental Effects 301
 5.5.1 Photophysical Processes in Gases and in Condensed Phases 301
 5.5.2 Temperature Dependence of Photophysical Processes 302
 5.5.3 Solvent Effects 303
Supplemental Reading 306

6. Photochemical Reaction Models 309
6.1 A Qualitative Physical Model for Photochemical Reactions in Solution 309
 6.1.1 Electronic Excitation and Photophysical Processes 310
 6.1.2 Reactions with and without Intermediates 313
 6.1.3 “Hot” Reactions 320
 6.1.4 Diabatic and Adiabatic Reactions 322
 6.1.5 Photochemical Variables 324
6.2 Pericyclic Reactions 332
 6.2.1 Two Examples of Pericyclic Funnels 332
 6.2.2 Minima at Tight and Loose Geometries 339
 6.2.3 Exciplex Minima and Barriers 341
 6.2.4 Normal and Abnormal Orbital Crossings 344
6.3 Nonconcerted Photoreactions 349
 6.3.1 Potential Energy Surfaces for Nonconcerted Reactions 349
 6.3.2 Salem Diagrams 355
 6.3.3 Topicity 356
Supplemental Reading 359
CONTENTS

7. Organic Photochemistry 361

7.1 Cis-trans Isomerization of Double Bonds 362
 7.1.1 Mechanisms of cis-trans Isomerization 362
 7.1.2 Olefins 364
 7.1.3 Dienes and Trienes 366
 7.1.4 Stilbene 369
 7.1.5 Heteroatom, Substituent, and Solvent Effects 372
 7.1.6 Azomethines 374
 7.1.7 Azo Compounds 376

7.2 Photodissociations 378
 7.2.1 α Cleavage of Carbonyl Compounds (Norrish Type I Reaction) 380
 7.2.2 N₂ Elimination from Azo Compounds 387
 7.2.3 Photofragmentation of Oligosilanes and Polysilanes 392

7.3 Hydrogen Abstraction Reactions 395
 7.3.1 Photoreductions 395
 7.3.2 The Norrish Type II Reaction 399

7.4 Cycloadditions 404
 7.4.1 Photodimerization of Olefins 404
 7.4.2 Regiochemistry of Cycloaddition Reactions 411
 7.4.3 Cycloaddition Reactions of Aromatic Compounds 417
 7.4.4 Photocycloadditions of the Carbonyl Group 424
 7.4.5 Photocycloaddition Reactions of α, β-Unsaturated Carbonyl Compounds 433

7.5 Rearrangements 434
 7.5.1 Electrocyclic Reactions 434
 7.5.2 Sigmatropic Shifts 445
 7.5.3 Photoisomerization of Benzene 448
 7.5.4 Di-π-methane Rearrangement 453
 7.5.5 Rearrangements of Unsaturated Carbonyl Compounds 460

7.6 Miscellaneous Photoreactions 464
 7.6.1 Electron-Transfer Reactions 464
 7.6.2 Photosubstitutions 474
 7.6.3 Photooxidations with Singlet Oxygen 476
 7.6.4 Chemiluminescence 480

Supplemental Reading 485

Epilogue 491

References 493

Index 517